GIS-Based Subsurface Exploration System

In 2012 MDOT SHA set a goal to develop a Geographic Information System (GIS) based subsurface exploration database. This database allowed engineers to better track, record, evaluate, analyze, share, and visualize the geotechnical subsurface data. Prior to this project MDOT SHA's geotechnical data was managed by the Field Exploration Division (FED) via a paper process which resulted in significant efficiency loss due to transcription errors, data accessibility, data transport and other issues. The picture below shows the content layer developed as a part of this project. This application was the foundation that has led to further enhancements since the project ended in 2014. This program and the enhancements that followed have provided major cost savings to the administration as out lined below.

Subsurface Exploration Database			Documentation and H
roject Details: Checked Out by 'SHACADD\JSHIU2' on 4/16/2013			Editing
Check-In and Finish Editing	Edit Project Details)	Delete Project
	Toggle Basemap		
	Project/FMIS #: Contract #: County: Description:		FR12 FR123456 Frederic Test projec
	Created By: Created On:		SHACADD\jshiu 3/21/201
	Last Updated By: Last Updated On:		SHACADD\JSHIU 4/16/201
- 807 	Boring Information: 6 Boring SB-1	5 Total Borings Hole Depth: Elevation: Northing: Easting:	39.5 472. 73540 82747
	SB-3 SB-4 SB-4A	Station: Offset: Offset Dir.: Station Ref.:	MD 144 / NEW MARKE
	B1 B2	Date Started: Date Complete: Driller: Boring By:	1/17/200 1/17/200 B. MIELKE T. POTTE SH
		SPT B. Counts: Rock Coring:	Ye

Electronic Data Requests

When an electronic boring request is received through the GIS-based interface, it is first validated by the Boring Request tool to identify if the boring locations are on a private property or wetlands. The tool also identifies all previous borings near the requested locations to avoid redundant drilling. After the automated review, the request is reviewed and validated by an engineer and a work order is added to the drilling queue. The system component saves substantial costs by reducing time spent preparing hand written forms, catching errors early on (out of state coordinates, private property, missing data, etc.), consolidating and tracking review correspondence, and spatially presenting the boring locations with reference to utilities, right-of-way, and other roadway asset locations.

General data flow through the boring request process

Remote Field Data capture

All data is now electronically collected in the field on a mobile device. Data is captured and provided real-time to project engineers. This component eliminates the time preparing hand written forms and converting to electronic data, and provides immediate quality control.

Automated Project Tracking

Throughout the requesting, drilling, and data delivery, the flow of data is

automatically tracked, allowing the program to provide all users a real-time look at the project queue. This includes the status of every project and the program as a whole. Automated project tracking eliminates the need to prepare weekly progress reports and project engineers no longer need to contact FED for status updates.

Maryland Department of Transportation State Highway Administration (MDOT SHA) 2018 AASHTO RAC High Value Research Project

Monthly Drilling Quantities

Historic Boring Data

All Boring data is now saved and provided spatially in this program. Users can generate gINT files for any set of historic borings. Additionally, when a boring is requested near a location that was drilled in the past, this historic data is automatically provided to avoid duplication.

Display of Historic Boring Data

Quantified Cost Savings:

This project has resulted in an estimated MDOT SHA cost savings of almost \$1M per year. The estimated savings for each component is listed below. The cost savings from catching errors (utilities, private property etc.) are not included in these conservative estimates. Such cost savings will increase as the quantity of archived data increases.

System	Average Time	Average Time	Cost Savings	Average # of	Cost Savings
Component	taken	taken	per project	projects	per year
	-before-	-after-	(\$70/hr)		
	8 hours to	4 hours to			
Electronic Data Requests	prepare;	prepare;	\$840	200	¢169.000
	8 hours to	0 hours to		200	\$106,000
	enter lab data	enter lab data			
Remote field data capture	16 hours to	0 hours to	\$1,120		
	convert paper	convert paper		200	\$224,000
	data to digital	data to digital			
Automated	24 hours a		\$1,690 por		
Drojoct	week updating	0 hours	\$1,000 per		697 260
Tracking	and tracking	UTIOUIS	week (by 52		Ş07,500
Паскіпр	projects		weeksj		
	Conservatively e	estimate: eliminat	e 2 borings on		
Historic Boring	each project with easily-retrievable historic data.			200	¢ 490 000
Data	Assume a cost o	f \$1,200 per borir	200	\$460,000	
	component save				
TOTAL					\$959,360