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CHAPTER 1: Introduction 
 

1.1 Research Background 

Although the contribution of the emergency response operations of Maryland’s 

Coordinated Highway Action Response Team (CHART) has been well recognized by the general 

public, much remains to be done to effectively contend with increasingly congested traffic 

conditions and the accompanying incidents.  In fact, to meet the expectation of policymakers and 

residents on minimizing the impact of non-recurrent congestion, CHART operations inevitably 

face the following challenges:  

• How to increase its detection coverage and rate?  

• Can the incident response time be further reduced?  

• How can the incident clearance operations be performed more efficiently?  

• How can the overall performance of CHART be maximized under the current resource 

constraints?  

The performance evaluations of CHART, conducted by The University of Maryland 

research team annually over the past 10 years, indicate that even a small percentage of 

improvement on any of the above challenging areas could increase benefits significantly. One 

potentially effective way to contend with such challenges is to take advantage of valuable 

information embedded in the CHART operational record over the past several years.  For 

example, an in-depth comparison of CHART incident data and MAARS reports (i.e., Maryland 

Automated Accident Report System) can shed some light on why some incidents were not 

recorded by CHART.  Such information can then be used to design some reliable ways to expand 

CHART’s detection coverage.   

A rigorous investigation of the relations between the incident clearance time and all 

contributing factors from the past data may explain why some types of incidents often result in 

longer durations, thus degrading the performance of CHART’s response operations. From the 

spatial distribution of incidents over different times of day in each target highway network over 

the past several years, CHART can also better allocate its highway patrol units to minimize 

incident response times.  In addition, the analysis of CHART’s performance as a function of its 

available budget may also assist responsible staff to justify the needed resources. 
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Considering the ever-increased statewide congestion and the demanding expectation of 

motorists, CHART will inevitably face the challenge of sustaining its impressive performance 

with diminishing resources. Thus, it is essential that CHART can maximize its effectiveness and 

efficiency by learning from the past operational experiences.  
 

1.2 Research Objective and Work Plan 

The primary project objective is to develop some effective strategies that can assist 

CHART staff in improving the efficiency of its operations and maximizing the resulting benefits 

under the existing resource constraints.  Strategy development due to data constraints has 

focused on the following critical aspects: 

• Understanding critical factors that contribute to an increase in incident response and 

clearance times; 

• Allocating available highway patrol units based on the temporal and spatial distributions 

of incidents to minimize the potential incident response times; and 

• Developing reliable models to predict the required duration of a detected incident and to 

identify critical contributing factors. 

Based on the above research objective, the project work was divided into two parts: Part-I 

was concentrated on the analysis of CHART’s performance data from 2007-2009 to identify 

potential improvement areas and Part-II was devoted to developing operational models to 

minimize incident response and clearance times.  The study also includes recommendations for 

CHART’s enhancement of incident response and traffic management. 
 

1.3 Report Organization 

 This research report comprises six chapters.  A brief description of core research results 

in each chapter is presented below. 

Chapter 2 presents the exploratory results of integrating accident records reported 

independently to CHART and MAARS. Section 2-1 first illustrates key variables and data items 

used by CHART to characterize a responded accident, followed by identification of similar data 

in MAARS recorded by the State Police Department for the same response operations. Section 2-

2 describes a data fusion process to select key variables from these two databases for integrating 
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critical information associated with the same accidents. This section also details the criteria and 

sequential search process used to match accident records between these two databases. Section 2-

3 reports the data integration results and recommendations for best using information from these 

two databases. 

Chapter 3 documents the analysis results of CHART’s incident response efficiency 

between 2007 and 2009, focusing on the interrelationships between incident response time and 

all contributing factors. Section 3-1 presents the distribution of incident response times classified 

by the number of blocked lanes and incident nature, finding that CHART patrol units tend to 

respond more quickly to more severe incidents.  Section 3-2 compares the performance of each 

operational center in response to different types of incidents, times of day, and environmental 

conditions. The comparison also includes the performance discrepancies among five CHART 

operational centers during peak and off-peak periods on different highways, highlighting the 

impacts of traffic congestion on the efficiency of incident response.  Section 3-3 summarizes 

research findings and recommendations for improving the efficiency of incident response. 

Chapter 4 details critical factors affecting each traffic control center’s efficiency in 

recovering traffic from incidents, highlighting the complex compound impacts of the incident’s 

nature, lane blockage, and environmental conditions on the resulting incident clearance time. 

Section 4-1 presents the distribution of average clearance times by blocked lanes, incident 

severity, and heavy vehicle involvement.  This section also illustrates the correlations between 

incidents of excessively long duration (i.e., over two hours) and the number of fatalities and 

injuries. Section 4-2 evaluates the performance of five CHART operation centers, focusing on 

their efficiency in clearing various types of lane-blockage incidents at different times of day and 

in severe weather conditions.  Section 4-3 summarizes the research findings and identifies 

critical variables for developing a prediction model for incident clearance time. 

Chapter 5 reports on the efforts to develop a set of reliable models for predicting duration 

of incident clearance, based on the dataset integrated from CHART and MAARS. Section 5-2 

offers a concise review of related literature, including a selection of explanatory variables and a 

discussion of critical issues associated with model development. Section 5-3 illustrates the core 

logic of various Bayesian-based estimation models, highlighting their strengths in modeling the 

unique characteristics of incident clearance time. Section 5-4 reports the estimation results from 

various incident clearance models calibrated with the merged dataset from the CHART and 
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MAARS databases. Section 5-5 includes research findings and recommendations for developing 

a comprehensive model to predict incident duration in the future. 

Chapter 6 discusses various optimization strategies for SHA to effectively distribute 

incident response units along freeway segments plagued by frequent incidents, including a 

comparison between the models developed from this research and other state-of-the practice 

deployment strategies, using the incident data from 2006 to 2011 on the I-495 Capital Beltway.   

Section 6-2 reviews the available strategies for deploying emergency response units and 

relevant studies in the literature.  Section 6-3 analyzes the formulations of several promising 

deployment models, including the one developed from this project.  Section 6-4 illustrates a 

comprehensive benefit/cost analysis with different response fleet sizes. Research findings 

produced from extensive analyses of the developed model are summarized in the last section, 

providing a basis for traffic managers to design a benefit-cost incident management system.  

Chapter 7 summarizes the research findings of this project and recommends some areas 

essential for CHART’s performance improvement, especially for incidents resulting in injuries 

and fatalities. Some critical issues associated with field data collection and management of the 

incident database are also discussed in this chapter. 
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CHAPTER 2: Exploring Accident Data Integration between CHART and 

MARRS 
 

2.1 Introduction 

  Both CHART and the Maryland State Police (MSP) record related information for their 

respective analyses. However, due to the differences in responsibility, each agency records 

mainly those data related to its potential applications, making the identification of contributing 

factors to accidents and their relations with the surrounding traffic conditions a very difficult 

task.  This chapter presents comparisons of accident information recorded in CHART’s database 

and MARRS (Maryland Automated Accident Record System), focusing on inconsistencies 

between these two databases and potential methods for their future integration. 

 This chapter is organized as follows: section 2.2 describes the format used by each 

database for recording accident-related information, and the list of key variables to characterize a 

recorded accident. Section 2.3 illustrates the data fusion process between these two databases 

and the matching results based on accident records from 2006 to 2008. Section 2.4 summarizes 

the suggestions for CHART and MAARS to form a complete accident information system for 

various operations and safety analyses. 

 

2.2 Data Items for Integrating Accident Information 

 The exploratory analysis was intended to find an effective way to match the recorded 

accidents between CHART and MAARS, as the injury and fatality information available only in 

the latter is critical to the development of prediction models for incident duration.  The 

experimental analysis started with the MAARS data from 2006 to 2008, where 103,510 accident 

records were identified for integration. Over the same period, CHART’s database contained 

6,053 incident records involving either injuries or fatalities.  Table 2-1 shows the list of data 

fields from CHART for use to match with the same accidents in MAARS. 
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Table 2-1: Data fields from CHART for use to match with MAARS 

Field Name Example Datum 
event_id 8d00488a2c5900e10047832e33235daa 

county code 11 
direction_code 2 

event_open_date 3/19/2008 14:20 
event_closed_date 3/19/2008 16:24 

location_text US 15 NORTH AT OLD FREDERICK RD 
cpi 1 
cf 1 

total_num_veh 2 
route_number 15 
route_prefix US 

 

Note that the fields of “route_number” and “route_prefix” were not originally present in 

the database, so they had to be generated by searching “location_text”. More than 40 fields in 

CHART’s database were excluded from the table for accident matching, since they have no 

corresponding analogues in MAARS. The field “cpi” stands for “collision and personal injury,” 

while “cf” stands for “collision and fatality.”  The field “direction_code” represents the direction 

of the traffic on the side of the road where the incident occurred, which is not always the road’s 

official cardinal direction, and mostly tends to be the approximate tangential direction of the road 

at that location. 

Table 2-2 presents the related data fields in MAARS used to match those in Table 2-1 

from CHART’s database. Different from the information contained in MAARS’s original field, 

the “Acc_date” field shown in the table has been aggregated with a special program to include 

both the accident date and time. The field of “total_num_veh” from CHART (see Table 2-1) 

corresponds to the “NO_veh”, as they represent the number of vehicles involved in the incident. 

The “Route_NO” and “Route_Type correspond to “route_number” and “route_prefix” in 

CHART, respectively, and represent the road where the incident occurred. 

The criteria used to match accidents in these two databases include: 

1. The logging date and time of the incident; 

2. Information on the location of the incident; 

3. The number of vehicles involved in the incident; and 
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4. Whether the incident resulted in injury only, fatality, or both. 

Note that the first two matching criteria would be sufficient to identify the same accidents 

for data integration if relevant information has been recorded properly in both databases. 

However, due to the discrepancy in the accident logging time between these two databases, 

criteria 3 and 4 were further used to ensure a better match. For logging date and time, the 

event_open_date table column from CHART’s database was chosen, because that particular 

column represents the earliest logging timestamp of the recorded incident. The columns titled 

Acc_Date and Acc_Time, from MAARS were combined to form a similar earliest-logging-

timestamp column. Criterion 3 was proposed because both databases contained a similar column 

to denote the number of vehicles involved. 

 

Table 2-2: Data fields from MAARS for use to match with CHART 

Field Name Example Datum 
Report_NO 809878892 

County 10 
Route_NO 15 

Route_Type US 
Final_log_mile 35.02 

Acc_date 3/19/2008 14:05 
Inter_NO  

NO_ped_injured 0 
NO_ped_killed 0 

NO_doc_injured 2 
NO_doc_killed 1 

NO_veh 2 
Chart_county_code 11 

 
To compile the information on the location of the incident, several columns were used 

from each database. For example, the original CHART database represents the county name of 

the accident location as a numeric code and uses a direction code to indicate the blocked traffic  

direction, (i.e., Southward or Northward), and a text-based location column that in many cases 

follows the format  of “<route prefix and number or street name> AT/PRIOR/AFTER 

<identifying feature or intersection>”. Some examples of variations in location format from 

CHART’s database are shown in Table 2-3. 
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Table 2-3: Examples of accident location information recorded in CHART’s database 

Location_text Event_id 
US 15 @ SUNDAYS LANE 0000bc0a5298006d0046b48c33235daa 

~I-495 / I-95 AT MD 214 CENTRAL AVE 1800116c0ebd00ed0046b48c33235daa 
md 424 at bell branch 28ff35b03f85009d0045b48c33235daa 

 
Because of these inconsistencies, this study has produced a computer program to parse 

the route prefixes and route numbers from 6,024 of the 6,053 CHART records. The resulting 

accuracy has been verified by the research team members with a manual matching method.  

In contrast, the location information in MAARS was already split into the fields of 

Route_Type, Route_No, Final_Log_Mile, Inter_No, which are, respectively route prefix, route 

number, mile along the route from the beginning of the route in each county, and the intersection 

number. Unfortunately, the intersection number was left blank in most sample records and, 

therefore, cannot be used to pinpoint the location of the incident along the route.  

The attempt to use the field of Final_Log_Mile was not successful because of the 

inconsistency in data recording. For example, some event records used one location in a county 

as “beginning of the route” and the other point as the “end,” but other records used the same pair 

of locations in a reverse order, thus making the information unusable to identify the accident 

location. Hence, the data matching with the accident location was based mainly on county codes, 

route prefixes, and route numbers. Note that ideally the matching process between these two 

databases can still yield acceptable results using the information from these fields, especially if 

the logging of the accident times was accurately recorded. 

The procedures used to perform the accident data matching are summarized below: 

Step-1: For each record in the CHART record set, a matching record was searched in MAARS 

with the information fields of county, route prefix, and route number, as well as injury- or 

fatality-related data and vehicle number. 

Step-2: For those matched accident records produced by Step-1, the logging timestamp of each 

CHART incident record with a time window of 30 minutes (+ 15 minutes) was used 

subsequently to filter those identified records.  

Step-3: After excluding all records that were already matched, the same procedures were 

reapplied to the remaining data records in MAARS but with a wider time window (i.e., 

+1 minute per increment). 

Step-4: Repeat Step-1 to Step-3 until the time window reaches 60 minutes (+30 minutes). 
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Note that filtering the accident records with a small time-bound increment was to ensure 

the best possible match based on the available criteria. After the time window reached 60 

minutes (i.e., the preset limit), the matching criteria were revised to include those records where 

their accident-involved vehicles recorded by two databases differ by one. This decision was 

based on the assumption that either the CHART’s response unit or the highway police could 

arrive at the accident scene later than the other party and was not notified that a vehicle had 

already been towed. 

To increase the matched samples, the filtering process was further loosened to include 

those accident records in the two databases that meet all matching criteria except the 

injury/fatality information.  This approach was proposed to account for some scenarios when 

victims could die in the hospital and either of these two parties failed to receive an update and 

thus recorded a different number of injuries and fatalities.  

Note that double-matching was not an issue with this procedure.  Every round of search 

produced only a few (less than 50) new records, and every record in the MAARS’s database 

yielded either one or no match with accident records in the CHART’s database.  The data search 

procedures were stopped at the time window of 60 minutes, because it was difficulty to verify 

that those accidents recorded in these two databases beyond the 60-minute (+30 minutes) 

window were indeed the same accidents. 

 

2.3 Matching Results and Recommendations 

Using the above procedures, the final matched data set between these two accident 

databases included only 1,930 of the 6,024 possible records, or about 32 percent.  This result is 

disappointing and highlights the need to address this vital data integration issue. 

Some recommendations on how to address this imperative task are summarized below. 

• For the CHART’s database, the location_text field should be separated into a 

route_prefix, route_number, and intersecting_route_prefix, intersecting_route_number. 

The route number and intersecting route number should be strictly number-based. 

• MAARS’s database has the information on county roads and their route numbers, so the 

same data should be shared with CHART to log those incidents that occurred on county 

roads.  
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• The route_prefix and intersecting_route_prefix should be either code-based, (i.e., 0 = IS, 

1 = US, 2 = MD, 3 = CO), or should be restricted to an enumerated data type that allows 

the user to select only IS, US, MD, or CO. If the accident does not occur at an 

intersection, the intersecting_route_number and intersecting_route_prefix should be left 

blank. 

• Both CHART and MAARS should use a precise geographical coordinate obtained via 

GPS to pinpoint the exact location of every reported incident.  By doing so, both 

databases can produce more reliable information than with a text-based reference to any 

special landmark or feature, such as “Howard County Border” or “Fort McHenry Toll 

Plaza.”  

Note that the use of GPS location information will be operationally more convenient than 

logging the mile marker along the road that may not exist, especially for smaller roads.  GPS 

information can also prevent the confusion of logging the miles along the road from the 

beginning of a county, because it is often not clear how to measure or which point to use as the 

“beginning.”  Recording the accident location with such information would also allow potential 

users to match the incidents by location between the two databases by placing a certain radial 

constraint on the coordinates. 

Recognizing the practical difficulties in changing the data recording procedures and 

formats for CHART and MAARS, the above minor modifications if properly implemented, 

however, can significantly increase the matching results between these two systems, even with 

the remaining recording discrepancies. The information integrated from these two databases 

systems will be very useful for enhancing CHART’s operational performance and developing 

safety improvement programs for highway networks in this region. 
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CHAPTER 3: Review of Incident Response Efficiency 
 

3.1 Introduction 

This chapter presents the analysis results of CHART’s response efficiency to different 

types of incidents, focusing on identifying key factors that often cause excessively long response 

times. It is expected that an in-depth analysis of the interrelationships between incident patterns 

and the performance of each local operational center under various environmental and traffic 

conditions can reveal some critical areas for SHA to further improve its operational strategies  in 

contending with non-recurrent traffic congestion. 

The rest of this chapter is organized as follow: Section 3-2 illustrates the distribution of 

incident response duration by critical factors such as the number of blocked lanes and fatalities, 

using the CHART incident data from 2007 to 2009. Section 3-3 compares the efficiency of 

CHART’s five local response centers in response to various types of incidents, highlighting their 

performance discrepancies under the resource constraints and the responsible network coverage. 

Research findings and suggestions constitute the last section.  Figure 3-1 illustrates the definition 

of each technical term and its corresponding timeline in the entire incident response and 

clearance process. 

 
Figure 3-1: Graphical illustration of the entire incident response and clearance process 
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3.2 Distribution of Incident Response Times by Key Factors 

Figure 3-2 presents the distribution of CHART’s average incident response times by 

whether or not incidents resulted in lane blockage and fatalities. During this 3-year period (2007-

2009), CHART’s average response times to incidents involving lane blockage were quicker than 

those causing only shoulder-lane rubbernecking impact. Similar discrepancy patterns also exist 

between incidents involving fatalities and those causing only injuries or property damage. The 

exact factors contributing to such performance discrepancies are to be identified by CHART, but 

the resource limitations and/or personnel constraints may naturally make incident response units 

to give a higher priority to those incidents potentially causing greater traffic impacts. 
 

 
Figure 3-2: Comparisons of incident response times between with and without causing lane 

blockage, and with and without resulting in fatalities. 
 

Figure 3-3 further compares the response time discrepancy under the following 

classifications: 

• On five major commuting freeway corridors: I-270, I-495, I-70, I-695, I-95. 

• On incidents of different severity levels: disabled vehicles, property damage, injury, and 

fatality. 
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• On different pavement conditions: snowy, wet, and dry, during peak and off-peak 

periods. 

• By different response centers. 

As shown in the graphical patterns, the finding that incidents involving lane blockage 

have shorter response times than those with no lane blockage holds across different roads, injury 

severities, pavement conditions, and times of the day. 

 
Figure 3-3: Comparisons of incident response times between with and without causing lane 

blockage across different classifications 
 

Figure 3-4 shows the comparison of average response times between incidents under 

different pavement conditions. As expected, severe weather conditions such as snow and ice 

indeed increased the average response time, reflecting the need to have special preparations to 

respond to incidents occurring on such days. 
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Figure 3-4: Comparison of incident response times with and without snow/ice conditions 

 

Figure 3-5 further illustrates the impacts of traffic congestion on the average incident 

response time, reflecting the need to prevent the response team from being impeded by slow 

traffic during peak hours. For example, it took CHART’s response units in the Washington 

region an average of 10.5 minutes to reach an incident scene if no lane blockage occurred during 

peak periods, but only 7.4 minutes for the same type of incidents during off-peak periods. 

Similarly, it took the response team in the Baltimore region an average of 10 minutes and 7.5 

minutes, respectively, for the same incident type during peak and off-peak periods. This finding 

also holds for incidents of different severities across all CHART’s service regions.  It, however, 

is noticeable that CHART’s response efficiency varies with incident severity and its resulting 

traffic impact (i.e. number of blocked lanes) regardless of the roadway congestion. This finding 

is evidenced in the consistent pattern shown in Figure 3-5. 
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Figure 3-5: Average response time by region during peak and non-peak periods 

 

3.3 Performance between Different Operations Centers 

Due in part to the available resources, the response efficiency of CHART’s five 

operations centers varies significantly, where AOC generally outperforms all other centers and 

TOC7 tends to take the longest response time for the same type of incidents.  A graphical 

comparison of the average response times among these five centers to incidents with and without 

resulting lane blockage is shown in Figure 3-6. Table 3-1 further shows the performance 

discrepancy among those centers even responding to incidents on the same route. For example, 

TOC7 took an average of 9.8 minutes to respond to incidents on I-70, longer than 6.5 minutes by 

SOC and 7.3 minutes by TOC3. Similarly, the average response time for AOC to reach incident 

scenes on I-95 was 4.5 minutes, about 40 percent less than TOC3 (i.e., 8.4 minutes). 

Understandably, various factors could contribute to these performance discrepancies. However, 

ensuring the consistency of incident response efficiency across different service regions is an 

important issue for CHART. 
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Figure 3-6: Comparison of average response times among five operations centers 

Table 3-1: Comparison of incident response times between response centers 
on different roads 

Center I-70 I-270 I-95 
 Mean St. D* N** Mean St. D N Mean St. D N 

TOC7 9.8 6.6 198 9.0 5.6 362    
TOC3 7.3 6.4 290    8.4 6.8 166 
TOC4    6.8 5.4 290 7.6 5.4 212 
SOC 6.5 7.3 63 4.7 5.3 34 6.1 7.4 113 
AOC       4.5 5.2 2249 

*standard deviation; ** sample size 

Table 3-2 further compares the performance of those five response centers in response to 

incidents causing no fatality during the off-peak period.  As reflected in the statistics, TOC7, on 

average, took 16.4 minutes on a snowy day to respond to an incident causing no lane blockage 

and fatality. This is much longer than the average 11 minutes to respond under the same 

conditions but without snow. In contrast, AOC’s response times to the same type of incidents 

under snowy and non-snow days were 4.9 and 6.7 minutes, respectively. The statistics in Table 

3-2 also reveal the following interesting patterns: 
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• Snow/ice roadway conditions always cause excessive delay to the response effort of 

every operational center; 

• AOC and SOC were consistently more efficient in responding to incidents regardless of 

snow; 

• TOC7’s average response time to all types of incidents was consistently longer than that 

of all other centers; and 

• All five incident response centers exhibit the same pattern of more promptly responding 

to incidents resulting in more traffic impacts. 

 

Table 3-2: Comparison of response times between response centers under different incident 
types and weather conditions 

Lane 
block Nature Time Centers

Snow No snow 
Mean S. D* N** Mean S. D N 

No block Non- 
fatality Off-Peak 

TOC7 16.4 11.7 31 11.1 7.4 381 
TOC3 13.3 11.1 13 12.0 8.9 191 
TOC4 13.2 7.8 15 10.7 7.4 223 
SOC 8.8 10.4 8 6.9 8.0 110 
AOC 4.9 3.8 7 5.4 6.7 285 

Block Non- 
fatality Off-Peak 

TOC3 7.9 8.2 26 5.7 4.8 552 
TOC7 7.6 9.5 6 5.5 3.6 244 
TOC4 6.6 8.2 38 6.2 4.5 717 
SOC 5.9 10.8 33 5.0 7.5 503 
AOC 3.5 3.2 45 4.3 4.6 1891 

*standard deviation; ** sample size 

Table 3-2 summarizes the response time differences among those five operations centers 

under various conditions, including whether there was lane blockage, weather, whether or not the 

incident resulted in a fatality, and time of day. The statistics shown in the Table are consistent 

with previous analysis results. TOC7 and TOC3 generally took longer to respond than the other 

three centers. The comparison results also confirm the previous finding that all operation centers 

consistently responded to incidents resulting in a greater number of blocked lanes more quickly, 

given the same incident nature, weather condition, and different times of day. This result seems 

to indicate that CHART has the potential to improve its overall incident response performance 

even under the current resource constraints. 
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Table 3-3: Comparison of response times between response centers under the compound 
impacts of key factors 

Nature Pavement Time Centers
Block No Block 

Mean S. D.* N** Mean S. D. N 

Fatal 
Snow 

& 
No snow 

Peak 
& 

Off-Peak 

TOC3 5.2 4.5 21    
SOC 3.5 5.4 125 10.0 7.7 7 

TOC4 3.2 2.8 9    
AOC 2.5 1.9 5 7.6 8.3 5 
TOC7 2.3 1.0 4 13.3 8.7 6 

No 
Fatal 

Snow Off-Peak 

TOC7 7.6 9.5 6 16.4 11.7 31 
TOC3 7.9 8.2 26 13.3 11.1 13 
TOC4 6.6 8.2 38 13.2 7.8 15 
SOC 5.9 10.8 33 8.8 10.4 8 
AOC 3.5 3.2 45 4.9 3.8 7 

No snow 

Peak 

TOC7 5.5 3.5 235 12.3 8.3 306 
TOC3 6.4 5.4 440 12.2 8.8 112 
TOC4 5.9 4.4 631 11.6 8.1 215 
SOC 4.3 3.9 186 9.8 8.9 30 
AOC 4.4 4.5 668 5.0 5.3 67 

Off-Peak 

TOC3 5.7 4.8 552 12.0 8.9 191 
TOC7 5.5 3.6 244 11.1 7.4 381 
TOC4 6.2 4.5 717 10.7 7.4 223 
SOC 5.0 7.5 503 6.9 8.0 110 
AOC 4.3 4.6 1891 5.4 6.7 285 

*standard deviation; ** sample size 

 

3.4 Summary of Key Research Findings 

This chapter presents the analysis results of CHART’s efficiency in responding to various 

types of incidents under different traffic and environmental conditions. It also compares the 

performance of five regional response centers, based on the distribution of incident frequency, 

severity, and impacts on traffic conditions. Some informative findings that could be used by 

CHART to enhance its incident response operations are summarized below: 

• CHART’s response efficiency is not consistent, varying with such factors as incident 

severity, traffic congestion, weather conditions, fatalities, and pavement conditions. For 
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example, the average response time for property-damage only incidents is longer than 

those having injuries and/or fatalities. 

• All CHART’s response centers under identical conditions consistently took shorter times 

to respond to incidents resulting in more traffic impacts such as causing multiple lane 

blockage or fatalities. 

• The average response times among CHART’s five operations centers differ significantly: 

TOC7 exhibited the longest average of around 9.5 minutes and AOC had the shortest 

time of 4.5 minutes over the period of 2007-2009. 

• The distribution of available resources (e.g., tow trucks and staff size) among CHART’s 

five operations centers may be one of the key factors significantly affecting their 

response efficiency. 
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CHAPTER 4: Analysis of Incident Clearance Efficiency 

4.1 Introduction 

As has been documented, the resulting clearance time of a detected incident depends on a 

variety of factors, including: its nature and severity, the need and availability of any special 

equipment, the coordination between different agencies (e.g., police, fire department, and 

medical emergency services), the location and its congestion level, time of day, as well as 

weather conditions. This chapter presents the analysis results of CHART’s incident clearance 

efficiency, focusing on identifying critical factors that cause an excessively long time for traffic 

recovery.  The identified relations between incident clearance time and various contributing 

factors further serve as the basis to compare the performance between CHART’s five incident 

response centers. 

The rest of this chapter is organized as follows: Section 4-2 presents the distribution of 

average incident clearance time by critical factors, such as the number of blocked lanes and 

fatalities, using the CHART incident data from 2007 to 2009. Section 4-3 compares the 

efficiency of CHART’s five local response centers in clearing various types of incidents, 

highlighting their performance discrepancies under the resource constraints and the responsible 

network coverage. Research findings and suggestions for improving CHART’s effectiveness on 

recovering incident-plagued traffic conditions constitute the last section.   

 

4.2 Distribution of Incident Clearance Times by Critical Factors 

 Figure 4-1 presents the distribution of average incident clearance times by blocked lanes, 

by fatality, and heavy vehicle involvement. The statistics in the table clearly reflect the following 

patterns: 

• Incidents causing multi-lane blockage, on average, resulted in longer clearance durations 

than  single-lane-blockage incidents, based on the data from 2007-2009; 

• Truck-involved incidents generally took the responsible operations center much longer 

time to clear the incident scenes; and 

• The average clearance time of incidents resulting in fatalities was much longer than those 

causing only property damage and/or injury. 
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Figure 4-1: Average clearance time by lane blockage, injury nature, and  

heavy vehicle involvement 
 

Table 4-1 further classifies the distribution of those incidents in Figure 4-1 by the 

threshold of two hours. It is noticeable that about 83 percent of fatal incidents lasted longer than 

2 hours, compared with only 5.8 percent of non-fatality incidents; about 18.5 percent of incidents 

requiring multiple lane closures had clearance times greater than 2 hours, while only 3.5 percent 

of single-lane closures lasted more than 2 hours. The same pattern also exists in incidents 

involving heavy vehicles, where about 12 percent of such incidents affected the roadway traffic 

for over two hours.  

Table 4-1:  Classifying the distribution of incident clearance times by the 
threshold of two hours. 

Factors lane block Incident Nature Heavy vehicle involvement
Time Multiple Single CF* Non-CF Heavy** Non-heavy

Shorter than 
 2 hours 

81.5% 
(3020) 

96.5% 
(10307) 

17% 
(49) 

94.2% 
(13278) 

88.2% 
(4226) 

94.8% 
(9101) 

Longer than 
 2 hours 18.5%(685) 3.5%(377) 83.0%(239) 5.8%(823) 11.8%(564) 5.2%(498) 

Total 100%(3705) 100%(10684) 100%(288) 100%(14101) 100%(4790) 100%(9599)
*Collision-fatality; ** heavy-vehicle involvement. 
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The performance analysis also included the impacts of weather and environmental 

conditions on incident clearance time. Figure 4-2 further presents the distribution of incident 

clearance times by pavement conditions and time of day. As expected, incidents occurring at 

night generally experienced longer clearance durations and snow/ice pavement conditions caused 

difficulty in clearance operations and thus required longer times. 

 
Figure 4-2: Average clearance time by environmental conditions 

 

Figure 4-3 shows the distribution of incident clearance time by weekday and weekend.  It 

is noticeable that incidents occurring during weekends had consistently longer clearance times 

than during weekdays for all three years. One plausible explanation is that fewer response teams 

are available during weekends than during weekdays, thus contributing to longer times to clear 

incidents.  
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Figure 4-3: Distribution of average clearance times by weekend and weekend. 

 

 Despite the discrepancies in incident clearance efficiency under various conditions, 

CHART’s involvement in traffic management significantly reduced the average time for 

roadway conditions to recover.  This is evident in the statistics shown in Figure 4-4 based on the 

incident data between 2007 and 2009.   

 

4.3 Analysis of Incident Clearance Efficiency by Operations Center 

 Comparison of incident clearance efficiency between CHART’s operations centers is not 

a straightforward task because the resulting clearance time depends on the collective impacts of 

various factors such as incident nature, severity, truck involvement, weather conditions, and 

coordination among all responsible agencies.  Figure 4-4 shows the preliminary statistics of 

incident clearance efficiency by those five CHART operations centers, where TOC3 and SOC 

had the shortest and longest clearance times, respectively. Note that SOC is responsible for 

managing the most severe incidents, causing it to have the longest average clearance time. 
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Figure 4-4: Clearance time distributions by each operation center 

 

Table 4-2 shows the incident clearance efficiency of CHART’s operations centers under 

the collective impacts of several critical factors, including fatality, lane blockage, pavement 

condition, heavy vehicle involvement, and time of day.  The analysis results in the table reveal 

the following patterns: 

• Truck-involvement incidents, regardless of whether the incidents resulted in single- or 

multi-lane blockage, generally had longer clearance times for all operations centers, even 

if the incidents occurred during the day and under non-snow and no-fatality conditions.  

• SOC consistently took the longest time among all operations centers to clear incidents 

regardless of lane-blockage or truck-involvement conditions. 

• TOC3 seems to clearly outperform all other centers with respect to clearance time in all 

incident scenarios.  
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Table 4-2: Average clearance time of incidents involving Heavy/Non-heavy vehicles 
under different conditions 

Lane 
block 

Nature Time Pavement Centers 
Heavy No Heavy 

Mean S. D N** Mean S. D N 

Multi 
lane 

Non- 
fatality 

Day 
hour 

No Snow 

SOC 43.8 29.1 157 40.9 25.2 336 
TOC7 45.1 28.3 93 35.4 22.7 157 
TOC4 40.8 26.6 250 33.2 21.7 333 
AOC 36.5 30.0 150 29.1 23.2 446 
TOC3 32.7 24.5 185 27.7 18.9 303 

Single 
lane 

Non- 
fatality 

Day 
hour 

No Snow 

SOC 30.0 28.0 232 26.9 21.9 430 
TOC7 26.9 24.6 404 23.1 18.7 1676 
TOC4 25.6 21.8 822 22.5 19.5 817 
AOC 23.6 21.6 723 20.8 18.4 2112 
TOC3 20.5 19.8 575 17.4 15.5 938 

*TOC6 and TOC5 are not included due to insufficient samples. **N: sample size; S.D.: standard deviation 

Table 4-3 compares the clearance efficiency of CHART’s five centers in response to 

incidents causing single- and multi-lane blockage under various conditions.  The statistics in the 

table show the same observed trend that increasing the number of blocked lanes for a given 

incident tends to increase its clearance time. For example, considering non-fatal events occurring 

under non-snow conditions, at night, and involving no heavy vehicle, SOC took an average of 

51.6 minutes to clear a multi-lane-blockage incident, compared with 42.5 minutes for single-

lane-blockage incidents. This trend is evident across all response centers.  Additional 

implications revealed in the table statistics include: 

• With all conditions being identical, all operations centers generally took longer times to 

clear incidents occurring at night than in the day time.  

• TOC3 had the best operations efficiency to manage non-fatal incidents involving heavy 

vehicles and causing either single-lane or multi-lane blockage. 

• AOC generally took longer time to respond to incidents involving heavy vehicles and 

lane blockage on snow days. AOC needed an average of 52 minutes on snow days to 

clear an incident causing multi-lane blockage, much longer than the average of 29.9 

minutes by TOC3 under the similar conditions. 
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Table 4-3: Comparison of incident clearance efficiency among different operations centers 

Nature Time Pavement Heavy Centers
Multi-lane Single lane 

Mean S. D N Mean S. D N 

Non- 

fatality 

Nigh  

hour 
No Snow 

Non- 

Heavy 

SOC 51.6 29.5 110 42.5 27.7 100 

TOC4 43.5 29.2 27 28.8 22.3 109 

AOC 38.8 28.8 125 25.6 22.3 466 

TOC7 38.6 27.0 10 25.0 19.9 58 

TOC3 36.2 23.8 25 20.3 18.4 78 

Non- 

fatality 

Day 

hour 
No Snow 

Non- 

Heavy 

SOC 40.9 25.2 336 26.9 21.9 430 

TOC7 35.4 22.7 157 23.1 18.7 1676 

TOC4 33.2 21.7 333 22.5 19.5 817 

AOC 29.1 23.2 446 20.8 18.4 2112 

TOC3 27.7 18.9 303 17.4 15.5 938 

Non- 

fatality 

Day 

hour 
Snow Heavy 

AOC 52.0 25.8 6 31.5 22.5 14 

SOC 45.9 30.2 8 36.0 36.4 6 

TOC4 38.4 27.7 10 29.0 20.7 17 

TOC3 29.9 13.8 8 19.9 24.1 22 
*TOC6 and TOC5 are not included due to insufficient samples. **N: sample size; S.D.: standard deviation 

Table 4-4 presents the impact of snow and time of day on each operations center’s 

clearance efficiency. Notably, SOC consistently took the longest time among all five centers to 

clear the impacts of any incident, regardless of having snow or not or during the day time or not. 

For example, SOC’s average clearance time for incidents occurring during typical daytime was 

about 35 minutes, but increased to 40 minutes with snow. The same incident scenarios occurring 

at night time took SOC 51 minutes and 58 minutes, respectively, to clear the incident impacts. In 

contrast, TOC3 had an average of 26 and 31 minutes, respectively, for the same incident 

scenarios. Overall, TOC3 seems to outperform all other operations centers under various incident 

scenarios. 
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Table 4-4: Comparison of incident clearance efficiency between centers under 
different times of day and weather conditions 

Time Night hours Day hours 

pavement Snow/Ice No Snow/Ice Snow/Ice No Snow/Ice 

Center Mean S. D N Mean S. D N Mean S. D N Mean S. D N 

SOC 57.8 32.8 25 51.2 30.4 336 40.1 33.2 47 34.7 26.9 1173

TOC4 40.7 28.4 44 33.8 24.4 194 25.1 23.8 75 26.3 21.3 3085

AOC 34.2 28.8 33 28.1 24.6 768 35.2 24.3 79 23.2 20.8 3432

TOC3 31.0 26.5 29 26.4 22.3 157 24.4 21.9 70 21.5 19.3 2009

TOC7 23.3 29.3 19 28.7 23.1 101 26.4 18.4 46 26.5 22.8 1473
*N: sample size; S.D.: standard deviation 

4.4 Research Findings and Conclusions  

This chapter presents the analysis results of CHART’s incident clearance efficiency 

under different traffic and environmental conditions. It also compares the performance of five 

regional response centers, based on the distribution of incident frequency, severity, weather 

conditions, and impacts on traffic conditions.  Some informative findings that could be used by 

CHART to enhance its incident response operations are summarized below: 

• The resulting clearance time of a detected incident depends on various factors, including: 

incident nature and severity, the need and availability of any special equipment, the 

coordination between all responsible agencies (e.g., police, fire department, medical 

team), and incident location. 

• Heavy-vehicle involvement, multi-lane closure, and night time are the key factors 

contributing to the longest incident clearance durations. 

• Truck involvement, multi-lane closure, and fatalities are three critical factors contributing 

to most excessively long incident clearance times. 

• Most incidents (83 percent) involving fatalities took more than two hours for roadway 

conditions to recover, revealing the need for better coordination with emergency 

responders. 

• The efficiency of incident clearance of CHART’s five response centers varies with the 

weather and environmental conditions; i.e., the average clearance duration at night time 
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and/or under a snow condition is substantially longer than the duration under day time 

and normal weather environments. 

• The discrepancies in the average incident clearance time among CHART’s five response 

centers reflect not only the difference in each center’s responded incident types and 

frequency, but also in the distribution of the required equipment/vehicles and staff to 

accomplish the mission. 
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CHAPTER 5: A Real-Time Model for Predicting Incident Clearance Duration 
 

5.1 Introduction 

Predicting the required clearance duration for a detected incident is an essential task for 

estimating the traffic impacts and for designing management strategies. The complex interactions 

among various factors affecting the performance of an incident response team, however, make 

such predictions very challenging. Researchers in the traffic community have devoted 

considerable effort to this issue with limited progress. This chapter presents exploratory results 

on this vital subject, based on the incident data recorded by CHART and MAARS. 

This chapter is organized into five different sections. Section 5.2 offers a concise review 

of related literature on the prediction of incident clearance duration, including a discussion of 

critical issues associated with model development. Section 5.3 illustrates the core logic of 

various Bayesian-based estimation models, highlighting their potential for developing incident 

clearance models. Section 5.4 reports the estimation results from various incident clearance 

models calibrated with the merged dataset from the CHART and MAARS databases. 

Recommendations for developing a comprehensive model for incident duration prediction in the 

future constitute the last section. 

 

5.2 Literature Review 

The impact of traffic incidents on roadway congestion has long been recognized by 

transportation professionals (DeRose, 1964; Wilshire and Keese, 1963), but not much progress 

has been made on how to predict the duration of a detected incident. In recent years, some 

researchers attempted to identify critical factors affecting incident duration.  For example, 

Khattak et al. (1995) used a sample of 109 incidents to model incident duration using regression 

and survival techniques. The authors concluded that most incidents tended to have longer 

durations if injuries, heavy vehicles, heavy loading, non-solid loading, facility damage, and 

adverse weather were involved. Garib et al. (1997) developed regression models for predicting 

incident duration and its resulting delay, based on factors such as the number of blocked lanes, 

the number of involved vehicles, truck involvement, time of day, police response time, and 

weather conditions.  
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For the same research objective, Chung et al. (2010) developed a survival analysis model 

to predict the clearance duration of 2,940 accidents on Korean freeways. Their study found that 

each fatality increased the incident duration by about 19.5 percent, while incidents within a work 

zone generally increased their durations by about 18.6 percent. Their report also indicated that 

the required clearance duration for incidents involving large trucks was about 45 percent longer 

than the average.  Another study by Nam and Mannering (2000) used 681 observations to 

construct a hazard-based duration model and concluded that traffic congestion was the most 

critical factor influencing response time and the clearance duration increased with an incident’s 

severity level. Their finding that more severe incidents generally result in longer durations was 

also confirmed by Golob et al. (1987) and Jones et al. (1991).  In analyzing urban freeway 

incidents, Giuliano (1989) also concluded that factors such as high traffic volume, fatalities, or 

truck involvement, tend to prolong the incident duration.  

Similarly, Khattak et al. (1995) developed a truncated regression with time sequential 

information to predict incident duration, and Garib et al. (1997) used the same model to show 

that 81percent of variation in incident duration could be attributed to the following six factors: 

the number of lanes blocked, the number of vehicles involved, truck involvement, time of day, 

police response time, and weather conditions. Sullivan (1997), using incident data from six U.S. 

cities to estimate their incident durations and associated delays, also reached similar conclusions.  

Focusing on freeways, Smith and Smith (2001) compared the performance of three 

prediction models for incident clearance time: stochastic model, non-parametric estimation, and 

classification-tree methodology. They concluded that none of those models could produce a 

sufficient level of accuracy for traffic managers to make reliable traffic management decisions.  

Different from the classical methods, Boyles et al. (2007) employed a naïve Bayesian 

classifier (NBC) to predict incident duration with various levels of information. They indicated 

that the performance of an NBC model was comparable with the classical regression-based 

prediction model. Along the same research line, Li and Cheng (2011) developed a tree-

augmented naïve (TAN) Bayesian classifier and a latent-Gaussian naïve Bayesian (LGNB) 

classifier to address the limitations of naïve Bayesian (NB) and unrestricted Bayesian networks 

(UBN). The authors concluded that the TAN model generally outperforms the NB and UBN 

models, but the LGNB and the NB classifier models perform similarly.  More recently, 

Demiroluk and Ozbay (2011) applied the Bayesian Information Criterion (BIC) to compare the 
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performance of three methods to predict incident duration:  naïve-Bayesian model, tree-

augmented naïve Bayesian model, and a K2-learned Bayesian network.  With extensive 

empirical analyses, they reported that the K2-learned Bayesian network produces the best results, 

and its accuracy level increases with the amount of available information.   

 

5.3 Analysis of Prediction Algorithms 

Data description   

Incident data from CHART’s data base was used for model development. It includes a 

total of 11659 incidents from year 2007 to year 2010, where 75 percent of the data was randomly 

selected for parameter calibration and the remaining samples were for performance evaluation. A 

standard quality control method was also applied to remove faulty data. The set of variables (see 

Table 5-1) associated with each incident record includes: incident nature, pavement condition, 

time of day, the number of vehicles involved, the number of heavy vehicles involved, lane 

closure, response center, and location. 

 

Bayesian Network and Inference 

 

Based on the results of the literature review and exploratory analysis, this study applied a 

Bayesian Network (BN) method to develop the incident clearance duration model.  A BN 

typically contains a set of variables (modeled as nodes), parent-child dependency of the nodes, 

and conditional probability distribution (CPD). For any nodes in a BN, their joint probability 

distribution can be calculated as follow (5): 

,ଵݔ)ܲ          ଶݔ … (ݔ =  ෑ ܲ൫ ܺ = หݔ ܺ = ൯ݔ
ୀଵ ,  ܺ       (5-1) ݂ ݏݐ݊݁ݎܽ ݂ ݐ݁ݏ ܽ ݏܺ݅ ݁ݎℎ݁ݓ

 

Figure 5-1 is a Bayesian network and its conditional probability distribution at every 

node, where X4 is a parent node of X2 and X5; X5 is a child node of X4 and parent node of X2; 

X2 is a child node of both X4 and X5. 
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Table 5-1: Description of Incident variables 

Variable Description 

Clearance Time 1 to 918 minutes 

Incident Nature 
(1) Collision and Fatality, (2) Collision and Injury, (3) 

Collision and Property Damage, (4) Disabled Vehicle 

Pavement Condition Snow, Dry, Wet, and Chemical Wet 

Time 
(1) Weekday Off-peak, (2) Weekday Peak, (3) Weekday 

Night, (4) Weekend Day, (5) Weekend Night 

Number of Vehicles Involved One, Two, Three and Four or More 

Number of Heavy Vehicles 

Involved 
Zero, One and Two or More 

Lane Closure 

(1) No Block, (2) Shoulder Block, (3) One Lane Block, (4) 

Two Lanes Block, (5) Three Lanes Block, (6) Four or More 

Lanes Block 

Operation Center AOC, SOC, TOC3, TOC4 and TOC7 

Road I-70, I-95, I-270,I-495, I-695 and US-50 

County 
Baltimore, Eastern, Southern, Western, Virginia and 

Washington 

 

 

Figure 5-1: Example of a Bayesian Network 
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The primary function of a BN is to calculate the probabilistic inference, which is the joint 

probability distribution of the node. For example, the probability of X4=0 while X2 =0 is 

computed as follows: 

P(X4=0|X2=0) =                                    38.6% 

K2-Structure Learning Model 

The interdependent relationships among variables are not always known while building a 

BN. Structure learning is designed for building the BN structure by progressively learning the 

relationships from the dataset. The K2-algorithm is an efficient search process that produces a 

BN by maximizing the joint probability between variables in the order.  A variable in a higher 

order generally has a higher probability to be a parent node. However, no universally agreed 

method or algorithm exists for determining the variable order, which is usually decided with 

expert knowledge.  For example, Ozbay (2006) used a logical parent-child relation to specify the 

ordering among key variables, and Demiroluk (2011) applied a special algorithm for the same 

purpose. 

Note that the K2-algorithm is mainly used to maximize the following Bayesian score 

function:  

 

(ܩ|ܦ)ܲ                                   =  ෑ ෑ Γ(ߙ)Γ(ߙ  ܰ) ෑ Γ(ߙ  ܰ)Γ(ߙ)
ୀଵ


ୀଵ


ୀଵ                                     (5-2) 

 

where: D is the database; G is the directed acyclic graph; n is the number of nodes; q୧ is the 

number of configurations of parents for node x୧; ߙ is the prior distribution; and N is the number 

of times each score is calculated. The search procedure for the above optimization process 

includes three steps:  

Step-1: Calculate the Bayesian Score for node i that is assumed to have no parent node. 

Setp-2: Add a parent to node i, if the resulting Bayesian Score is greater than the  

            no-parent condition; and then add the connection between the parent node  

            and node i. 
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Step-3: Search the space to add a parent node on node i until the Bayesian Score has been 

            maximized. 

 
Scoring Function 

As stated previously, Bayesian Information Criterion (BIC) is the most popular method to 

select different Bayesian structures constructed from the available data. The BIC scoring 

function, designed to maximize the likelihood but penalize the unnecessary model complexity, 

has the following form: 

                                                                                        (5-3) 

where: N is the number of samples; G is the dimension of the model; and ܲ(ܩ|ܦ,  is the (ீߠ

likelihood of the structure. 

In performing the Bayesian network inference, one defines a prediction as accurate if the 

category with the highest joint probability matches the actual category. For example, the “Four 

Duration” box in Figure 5-2 shows that the category of more than thirty minutes is the most 

probable one because it has the highest probability of 28.3 percent. Note that the category of 15-

30 minutes has the second highest probability of 26.5 percent, slightly less than the highest 

category of 28.3 percent.  Hence, the prediction would be defined as inaccurate if the actual case 

fell between fifteen to thirty minutes.  

Note that using this criterion alone in model evaluation often underestimates the 

performance of some calibrated models that may produce many close but not exact predictions of 

clearance times. Such prediction results, though not perfectly matching the actual clearance 

durations, remain useful for traffic agencies to estimate the traffic impacts incurred by incidents. 

As a result, this study used three evaluation functions for model selection: Logarithmic Loss, 

Quadratic Loss and Spherical Payoff selection parameters.  

                                          Quadratic Loss : MOAC 1 െ 2 ܲ  ( ܲଶ)
ୀଵ                                               (5-4) 

                                     Spherical Payoff : MOAC ێێۏ
ۍ ܲට∑ ∑ ൫ ܲଶ൯ୀଵୀଵ ۑۑے

ې                                              (5-5) 
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where:  MOAC stands for the mean value of all cases; Logarithmic Loss ranges from the best 

performance of zero to the worst of infinity; Quadratic Loss ranges from zero to two with the 

value of  zero denoting the best score; and Spherical Payoff ranges from zero to the best result of 

one. 

 

Figure 5-2: A BN for Predicting Incident Clearance Duration 

5.4 Model Development and Estimation Results 

This study has calibrated two types of incident clearance prediction models: a full model 

using all available incident related data, and a partial model calibrated with only partial 

information available in real time operations. The latter was developed to assist control centers in 

best estimating the traffic impacts even though some detailed information (e.g., the number of 

blocked lanes, fatality or injury, etc.) may not be available at the decision time. Figure 5-3 shows 

the classification of the partial-information models, based on whether or not the detected incident 
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resulted in serious injuries.  In all groups of models presented hereafter, 75 percent of the total 

sample data was used for parameter calibration and the rest was used for performance 

assessment. 

 

Note: *Serious Injuries = CPI + CF   **Non-Serious Injuries = CPD + Disabled Vehicles 

                  Figure 5-3: Graphical illustration of the available Data and the Model Structure 

Recognizing the data deficiency and the difficulty in using one model to fit different 

types of incidents, this study also explored a sequential method to develop various incident 

clearance duration models.  The core idea of this approach is to divide all sample data into 

several groups by using incident nature and the number of blocked lanes as the two sequential 

classifiers. One can then apply the BN method to calibrate the best-fit model for each group of 

incident data. 

Figure 5-4 (a) illustrates the classification results of the dataset, which includes three 

main categories:  collision/fatality (CF), collision/property damage/injury (CPI), and 

collision/property damage (CPD) and disabled vehicles. Figure 4-4(b) shows similar results but 

comprises two categories: CF&CPI and CPD& disabled vehicles. Figure 4-4(c) presents the 

resulting samples classified as CF&CPI, CPD, and disabled vehicles. 
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Figure 5-4(a): Data Classification and Model Structure -1 

 

Figure 5-4(b): Data Classification and Model Structure -2 

 

Figure 5-4(c): Data Classification and Model Structure-3 
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Estimation results 

  Note that two different ordering sequences for variables were used to calibrate the BN 

model parameters. The first one (Ordering -1) is:  Road > Operation Center > Time > Pavement 

Condition > Total Number of Vehicles > Lane Closure > Incident Nature > Heavy Vehicles > 

Duration. In this ordering sequence, Duration has the lowest rank to be a parent of all other 

variables.  

The second ordering sequence (Ordering-2) was based on the knowledge of field 

operators, as follows:  Incident Nature > Total Number of Vehicles > Lane Closure > Pavement 

Condition > Time > Road > Operation Center > Heavy Vehicles > Duration.  The estimation 

results of each data group using the K2-algorithm under these two order sequences and their BIC 

scores are presented in the remaining section. 

 

Table 5-2: BIC Scores of Different Models 

Model BIC Scores 

Full Model – Ordering 1 -1809.832 

Full Model – Ordering 2 -2403.019 

Serious Model – Ordering 1 -680.9486 

Serious Model – Ordering 2 -564.1333 

Non-Serious Model – Ordering 1 -953.27023 

Non-Serious Model – Ordering 2 -752.94533 

 

Table 5-2 shows the BIS score for each model, where the full model under Ordering-1 

yields a better performance than under Ordering-2.  However, the partial-information models, 

comprising Serious/Non-Serious injury categories, achieve a better accuracy under the Ordering-

2 sequence. Hence, Ordering-1 was used to build the Full model and Ordering-2 was applied to 

construct the partial-information models. 

Table 5-3 lists all variables used for developing both the full and the partial-information 

models (i.e., incidents resulting in serious and non-serious injuries). The Non-Serious submodel 

in the latter was developed with incident data of disabled vehicles and collision/property damage, 

while the Serious model used injury and fatality incident data for parameter calibration. 
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The prediction result with the full model is shown in Table 5-4, where most predicted 

clearance durations fall into two categories: the 1-15 minutes and 30-more minutes. The 

accuracy rate of the15-30 minutes category is much lower than other two categories. Overall, it 

reflects the fact that the data quality cannot support the models to perform the prediction of 

incident clearance duration at the precision level of 15 minutes. The overall accuracy rate of the 

full model is 54 percent if one divides all incident clearance durations at the range of 15-minutes 

intervals.  However, by classifying incident clearance durations into two categories of either less 

or over 30 minutes, the full model yields an acceptable level of prediction results, as shown in 

Table 5-5, where the model can correctly predict the duration for about 90 percent of less-severe 

incidents. 

 

Table 5-3: List of Variables used in the Full Models and Serious/Non-Serious Models 

Variable Full Models 
Serious/Non-Serious 

Models 

Clearance Time 1-918 minutes Same 

Incident Nature 

(1) Collision and Fatality, (2) Collision and Injury, 

(3) Collision and Property Damage, (4) Disabled 

Vehicle 

N/A 

Pavement Condition Snow, Dry, Wet, and Chemical Wet Same 

Time 

(1) Weekday Off-peak, (2) Weekday Peak, 

(3) Weekday Night, (4) Weekend Day, 

(5) Weekend Night 

Same 

No. Vehicles One, Two, Three and Four or More 
One or Two and Three or 

more 

No. Heavy Vehicles Zero, One and Two or More Yes/No 

Lane Closure 

(1) No Block, (2) Shoulder Block, (3) One-Lane 

Block, (4) Two-Lane Block, (5) Three-Lane 

Block, (6) Four or More Lane Block 

No or shoulder, One or 

two and More than three 

Operation Center AOC, SOC, TOC3, TOC4 and TOC7 Same 

Road I-70, I-95, I-270,I-495, I-695 and US-50 Same 
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The prediction results with the Serious/Non-Serious injury model are shown in Table 5-6 

and Table 5-7.  Note that the Serious-injury model was designed to explore the potential of 

predicting the clearance duration of serious-injury incidents at the precision level of 20 minutes.  

It, however, yields only an accuracy rate of 44 percent. A more ambitious attempt with the Non-

Serious model was to predict the clearance duration of an incident at the precision level of eight 

minutes, but the estimation results in Table 5-7 indicate that both the data quality and model 

performance cannot support traffic managers’ expectation of having such information at this high 

precision level.  

In addition to using the correctly predicted percentage for evaluation, Table 5-7 also 

shows the comparison results with three performance indicators, where the full-information 

model with the interval of 30 minutes outperforms all other prediction models.  

 

Table 5-4: Full model prediction results with three categories of 
incident clearance durations 

 Category Predicted 

Actual 

 1-15 minutes 15-30 minutes 30+ minutes Accuracy 
1-15 minutes 921 51 202 78% 
15-30 minutes 397 131 260 17% 
30+ minutes 278 75 601 63% 

 

Table 5-5: Full model prediction results with two categories of incident duration 

 Category Predicted 

Actual 
 1-30 minutes More than 30 minutes Accuracy 

1-30 minutes 1722 250 87% 
More than 30 minutes 606 337 36% 

 

Table 5-6: Serious-injury model prediction results 

  Predicted 

Actual 

 1-20 minutes 20-40 minutes 40+ minutes Accuracy 
1-20 minutes 115 35 107 45% 
20-40 minutes 105 57 107 21% 
40+ minutes 71 46 194 62% 
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Table 5-7: Non-serious model prediction results 

  Predicted 

Actual 

 1-8 minutes 8-15 minutes 15-30 minutes 30+ minutes Accuracy
1-8 minutes 285 139 124 2 52% 
8-15 minutes 193 210 124 5 39% 
15-30 minutes 138 205 158 6 31% 
30+ minutes 236 147 99 9 2% 

 

Table 5-8: Non-serious model prediction results 

 Full Model Serious Model Non-Serious Model 

Logarithmic loss 1.002 1.055 1.348 

Quadratic loss 0.597 0.6377 0.7318 

Spherical payoff 0.633 0.6015 0.5175 
 

Note that the above models’ undesirable performance can be attributed partly to the 

incomplete collision information collected by CHART, which only classifies all collision-

incidents into five categories: disabled vehicles, collision and property damage, collision and 

injury, and collision and fatality. Some critical data, such as the number of injuries or fatalities, 

are not recorded in the CHART’s database.  In contrast, the database in MAARS contains more 

detailed information on each collision-incident, which includes: disabled vehicle, fatality, 

property damage, incapacitating injuries, possible incapacitating injuries, and non-incapacitating 

injuries. However, MAARS does not record traffic condition and lane-blockage data during 

incident clearance operations.  Hence, to cope with the data deficiencies, one alternative is to 

merge the CHART and MAARS database into a new synthesized database that contains mutually 

supplemental information for better model calibration. 

Table 5-9 shows the incident classification in the CHART and MAARS databases. 

Because these two databases use different formats to record their own concerned data, it is 

difficult to identify the same incident and to merge all associated data from these two systems. 

Table 5-10 presents two sets of criteria used in matching those incidents recorded by both 

databases: the incident reported date, time, located county, route name, incident nature, or 

number of involved vehicles. Note that due to both the data recording quality and the format 



42 
 

discrepancy, the number of correctly matched cases decreases with the number of criteria used 

for identifying incidents. 

 

Table 5-9: Incident Classification in the CHART and MAARS Databases 

 CHART MAARS 

Categories 

(1) Collision and Fatality 

(2) Collision and Injury 

(3) Collision and Property Damage 

(4) Disabled Vehicle 

(1) Collision and Fatality 

(2) Collision and Incapacitating Injury 

(3) Collision and Possible Incapacitating 

Injury 

(4) Collision and Non Incapacitating 

Injury 

(5) Collision and Property Damage 

(6) Disabled Vehicle 

 

Table 5-10: Criteria used in merging incident data from the CHART and MAARS Databases  

Criteria Description 

Level-1 

1. Time difference within twenty minutes on the same day 

2. Same county 

3. Same Route 

4. Difference in the number of vehicles involved does not exceed one vehicle 

Level-2 

1. Time difference within twenty minutes on the same day 

2. Same county 

3. Same Route 

4. Same Incident Nature as classified in Table 4-9. 

 

Using the correctly merged dataset to recalibrate the full model at an interval of 15 

minutes and 30 minutes, the prediction results, as expected, are better than those based only on 

the collision information from CHART. For example, the full model calibrated with the merged 

dataset can improve its prediction accuracy for incidents between 1-15 minutes from 78 percent 

to 84 percent, and for those over 30 minutes from 36 percent to 46 percent (see Table 5-11) if 

viewing the interval of 15 minutes as an acceptable variance range.  Similarly, if the main 
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concern on a detected incident is whether or not its clearance duration will exceed 30 minutes, 

the full model calibrated with the merged dataset can improve its prediction accuracy for short-

duration incidents (i.e., less than 30 minutes) from 87 percent to 97 percent. 

 

Table 5-11: Prediction results by the full model based on the merged dataset 

  Predicted 

Actual 

 1-15 minutes 15-30 minutes 30+ minutes Accuracy 

1-15 minutes 858 7 154 84% 

15-30 minutes 364 21 191 4% 

30+ minutes 333 16 292 46% 

 

Table 5-12: Full model prediction results based on the interval of 30 minutes 

  Predicted 

Actual 

 1-30 minutes More than 30 minutes Accuracy 

1-30 minutes 1562 53 97% 

More than 30 minutes 549 73 12% 

 

Note that the above prediction results reflect the common deficiency of all developed 

models in predicting the clearance duration of more severe incidents lasting more than 30 

minutes. This is likely due to two reasons: (1) the clearance durations of more than 65 percent of 

incidents recorded in both the CHART and MAARS databases are less than 30 minutes, 

naturally causing a bias in model calibration and prediction; and (2) incidents lasting longer time 

periods generally attribute to many complex factors that are not all recorded in these two 

databases. 

Classified by incident nature and lane-blockage information 

To contend with the difficulty of predicting the clearance duration of severe incidents, the 

research team also explored the alternative of developing a model for each incident group 

classified sequentially by incident nature and the number of blocked lanes. The performance of 

each prediction model under different incident intervals is shown in Figure 5-5. 
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The first set of prediction results presented in Figure 5-5(a) includes the following 

incident clearance models: collision/fatality(CF), collision/property damage/injury (CPI)-one or 

no blocked lane, collision/property damage/injury(CPI)-two or more blocked lanes, 

collision/property damage/disabled vehicle (CPI-disabled)-one or no blocked lane, and 

collision/property damage/disabled vehicle (CPI-disabled)-two or more blocked lanes. The 

prediction results reveal a consistent pattern across all models, that is, those short-duration but 

high frequency incidents are likely to be predicted correctly. For those incidents lasting over 40 

minutes, only the model for the category of collision/property damage/disabled vehicle(CPD-

disabled)-two or more blocked lanes produces an acceptable accuracy (72 percent) even at the 

precision of 20 minutes. 

The second set of performance results, shown in Figure 5-5(b), includes the combined 

CF&CPI models and the CPD-disabled models under two types of lane-blockage conditions. The 

former set of models calibrated with severe incident data yields somewhat promising results, 

where the one for incidents causing no or one blocked lane can achieve 94 percent and 82 

percent accuracy for those under 20 minutes and between 20-60 minutes, respectively. In 

contrast, for incidents in the same duration categories but blocking multiple lanes, the model for 

CF&CPI- two or more blocked lanes can correctly predict only 71 percent and 57 percent, 

respectively, out of all sample cases. Both sets of models cannot yield acceptable prediction 

results for those incidents lasting over 60 minutes, reflecting that some additional factors that 

complicate the clearance operations may not be recorded in the database. 

The last step of this model analysis is to first separate those incidents classified as CPD 

and disabled-vehicles into two groups, and then further divide them into two subgroups based on 

the resulting number of blocked lanes. The performance results are shown in Table 5-5(c), where 

both CPD models show sufficiently reliable capability for predicting all incidents lasting less 

than 60 minutes. The models for disabled-vehicles, due apparently to its sample distribution, 

yield perfect prediction for those lasting less than 15 minutes, but not for the remaining incidents 

in the same category.  
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Figure 5-5(a) Estimation results of clearance time prediction models 

 

Figure 5-5(b) Estimation results of clearance time prediction models 
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Figure 5-5(c) Estimation results of clearance time prediction models 

 

5.5 Conclusion 

 Recognizing the critical role of incident clearance duration in design of traffic 

management strategies, this chapter presents an advanced Bayesian network method for model 

development using both the CHART and MAARS datasets. Due to the complex impacts of 

various factors on incident clearance operations and the quality of the available data, some 

developed models are not capable of producing a desirable level of accuracy.  While much 

remains to be learned about critical factors influencing incident clearance operations, some 

suggestions for future development are listed below: 

• All factors affecting incident clearance duration need to be precisely collected and 

recorded in the database. 

• Neither CHART nor MAARS records all critical factors affecting the incident clearance 

operations, so some efforts to merge these two mutually supplemental data systems will 

be an essential task. 
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• Both datasets should have a reliable quality control mechanism to filter faulty data and 

identify the data precision level (e.g., 5 minutes). The large number of short duration data 

(e.g., less than 2 minutes) that heavily bias the sample distribution makes model 

development an extremely difficult task. 

• Data recording efforts should be improved as both datasets contain a large percentage of 

missing data (e.g., number of blocked lanes) for each recorded incident.  

• One model for all types of incidents is unlikely to be effective due to the variety of 

factors that may affect the progress of an incident management team. 

• Classifying incident data by the severity level and the resulting blocked lanes seems to be 

a promising way to develop a comprehensive set of prediction models for incident 

clearance duration. 
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CHAPTER 6: Optimal Strategies for Deploying Freeway Incident Response Units 

 
 
6.1 Introduction 

This chapter presents an optimization strategy for SHA to effectively distribute incident 

response units along freeway segments plagued by frequent incidents. The proposed method, 

based on the p-median model, convincingly outperforms three state-of-practice deployment 

strategies, using the incident data from 2006 to 2011 on the I-495 Capital Beltway.  Section 6.2 

reviews the available strategies for deploying emergency response units and relative studies in 

the literature.  Section 6-3 analyzes the formulations of several promising deployment models, 

including the one developed from this project.  Section 5-4 illustrates a comprehensive 

benefit/cost analysis with different response fleet sizes. Research findings produced from 

extensive analyses of the developed model are summarized in the last section, providing a basis 

for traffic managers to design a benefit-cost incident management system.  

 

6.2 Review of available models 

 Traffic incident is a major cause of roadway congestion and the related adverse 

environmental impacts. For example, Skabardonis et al. (2003) found that incident-related delay 

contributed from 13 to 30 percent of the total congestion delay during peak periods, based on an 

analysis of two freeway corridors in California. In a more comprehensive study, FHWA (2005) 

found that about 25 percent of congestion in the US is incident-related, indicating the need to 

have an effective incident management system that includes detection, response, and traffic 

management to contend with non-recurrent congestion. For instance, prompt responses by 

CHART have reduced the incident durations by about 25 percent for the last seven years (Chang, 

2009), yielding significant benefits to both motorists and the entire travel environment. 

Since efficient response is critical to minimization of incident impacts, many traffic 

management agencies are exploring various strategies to best use their limited emergency 

response units. For example, some (Skabardonis, 1998; Lou, 2010) introduced a freeway service 

patrols (FSP) program to assign tow trucks to patrol freeway segments and clear incidents. In 

highway networks where traffic surveillance and incident detection are available, some 

researchers (Larson and Odoni, 1981; Pal and Bose, 2009) argued that it is more efficient to 
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deploy response units strategically and dispatch them after detecting an incident. The key 

question for designing such strategies is how to deploy available response units to minimize the 

response time.  

In practice, most traffic managers tend to use experience-based methods such as 

allocating available response units near high-frequency incident locations, distributing them 

evenly over the entire coverage area, or positioning standing-by units at the Traffic Operation 

Center (TOC). Such experience-based methods, however, may not best use available resources, 

especially when the incident frequency or coverage area is not at the desirable level. This study 

has produced an effective method for deploying emergency response units, taking advantage of 

state-of-the-art developments in the literature.  

Most existing studies related to this subject can be categorized into two categories: 

median and coverage models. The former, first introduced by Hakimi (1964) in the context of 

deciding facility locations, seeks to position emergency units to minimize the average response 

distance or time. Following the same modeling paradigm, Daskin (1987) constructed a mixed-

integer programming (MIP) model to solve the location, dispatching, and routing problems for 

incident response vehicles. Pal and Sinha (1997) introduced a similar model to determine the 

optimal locations for incident response units to minimize the total operating cost.  

In contrast, coverage models focus on minimizing the number of response units required 

to cover the target area with a predefined level of service (Toregas, 1971), or maximizing the 

demand that can be covered by the available emergency units, known as the Maximal Coverage 

Location Problem (MCLP) introduced by Church and Revelle (1974). As an extension to MCLP, 

Daskin and Stern (1981) proposed the Backup Coverage Problem to maximize the demand areas 

to be covered multiple times, while Gendreau et al. (1997) considered two different service 

standards for coverage. Kepaptsoglou et al. (2011) applied Genetic Algorithm to solve a DSM of 

emergency response services considering historical frequency and severity as the primary 

standards. It does not, however, account for variation in travel time. 

A main criticism of these models is their common assumption that the closest response 

unit is always available. Mirchandani and Odoni (1979) observed that the policy of dispatching 

the closest response unit is not always optimal when the response units have a high probability of 

being occupied. The Hypercube Queuing Model (HQM) developed by Larson (1974) proves to 

be a very useful tool to evaluate the performance of emergency response systems while 
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considering the stochastic nature of incidents. However, HQM requires the locations of response 

units to be input and cannot determine the optimal configuration of the system (2009). 

To address the same stochastic issue in such a system, Daskin and Haghani (1984) 

proposed a heuristic approach to minimize the expected arrival time. Sherali and Subramanian 

(1999) introduced an opportunity-cost-based model to consider the loss of coverage when one 

unit becomes occupied. Geroliminis et al. (2009) extended HQM to build a normative model that 

can generate optimal strategies, while considering spatial and temporal patterns of the demand 

and the availability of a response unit. Their paper presented two key findings: (1) the MCLP 

model does not perform well when considering the stochastic nature and availability of the 

response units; and (2) the traditional p-median model can provide an “adequate approximation” 

to the results by the more complex models, adding only 4 percent of average response time for 

the modest demand (i.e., one incident/hour on a 72 mile freeway segment). 

Another concern associated with existing models is their deficiencies in modeling the 

impact of future demand uncertainty.  Since incident patterns may evolve significantly over time, 

an emergency response system designed with the historical data may not always perform well 

under the changing traffic environments. This critical issue of adapting to the temporal and 

spatial changes in incident patterns with a robust deployment strategy has not been adequately 

addressed yet in the literature. 

One critical issue in designing a deployment strategy is to maximize the resulting social 

benefits and minimize operating costs, because most traffic management agencies are operated 

under resource constraints. Hence, the challenge is how to deploy the available EMS units to 

maximize the total social benefits, or to identify the optimal number of EMS under the projected 

incident distribution pattern. A comprehensive cost/benefit analysis of various location/allocation 

strategies under a projected incident pattern could help traffic agencies to optimize their fleet 

size. 

To address the above concerns, this study presents a two-stage process to model the task 

of deploying emergency response units.  It first compares the performance of the optimal 

incident response strategy based on the p-median model with three experience-based methods. 

The comparison was based on the incident data from 2006 to 2011 on the I-495 Capital Beltway, 

using different fleet sizes and their resulting costs as well as benefits. 
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6.3 Model Formulation 

 This section investigates three experience-based methods for allocating emergence 

response units, including 1) allocating available response units near high-frequency incident 

locations, 2) distributing them evenly over the entire coverage area, and 3) positioning standing-

by units at the Traffic Operation Center (TOC).  

 Consider I regions to be served by no more than P emergency response units over J 

potential sites; M (            is the set of location sites to house the response units. In general, given 

the following inputs: 

•      , travel cost from location j to region i; and 

•                   , the probability that an accident occurs in service region i during a given time 

period,  

The allocation model to minimize the total response time should yield the following output: 

• a response strategy Y as follows: 

                                                               (6-1) 

• an allocation strategy, denoted by X, where each member xij equals 1, if accidents at 

region i are to be managed by the response units located at location j, and 0 otherwise. 

The spatial distribution of accidents is represented by                 .  Traffic management 

agencies can formulate their strategies, X and Y, based on the historical data.  

After classifying the accident pattern, traffic agencies can then evaluate the selected 

candidate strategies based on the following annual total response time: 

                                                                            (6-2) 
where for the n-th incident of the year, 

                                       (6-3) 

 In addition, given the selected allocation strategy, it may also be desirable for the traffic 

agencies to further decide the most cost-benefit number of response units, P. This issue will be 

addressed in the next section. 
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Experience-based strategies 

Strategy-I  

Under this strategy all emergency response units will be stationed at the P sites that 

exhibit high incident rates, and the strategies Y and al X can then be decided as follows: 

Step1: Choose the P sites with the highest incident rates to form the location site M. If several 

sites have the same incident rates, then randomly choose P sites from them. Assign 

proper values to Y according to Equation 1. 

Step2: For each site  , find the closest site    among all candidate locations that satisfy              

and assign response unit at     for any incident at   by: 

                                                           (6-4) 

 

Although previous studies suggested that dispatching the closest response unit to a 

detected incident does not necessarily guarantee the best result, such a strategy is simple and thus 

widely practiced.  Assuming that only one incident may occur within a small segment over a 

sliced time interval, the response strategy can then be uniquely determined by following steps 1 

and 2. The annual response time, based on the historical data, can be calculated with Equation 2 

for comparison with other strategies. This strategy can generally reduce the response time at the 

historical “hot spots” in the service area. However, if these locations are overly concentrated at 

one corner of the service area, the strategy may not perform well, especially when those “hot 

spots” may vary over time. 

 

Strategy-II  

The second experience-based strategy seeks to distribute emergency response units 

evenly over the entire coverage area so that no location would suffer excessively long incident 

response time. This problem can be formulated as: 

                                                               min ܼ =    ݀ ݔ                                                         (6-5) 
.ݏ                                                               .ݐ  ݔ = ݅ ݈݈ܽ ݎ݂ 1 ∈ ∈                                              ܫ (6-6) 
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where dij represents the travel distance between the response unit j and the service request 

location i. Equation 6 guarantees that one and only one response unit will be assigned to each 

site. This problem has been proved as NP-hard in the literature. Moreover, it does not consider 

the differences of accident frequency and travel time at different locations. Therefore, this study 

will not further discuss its algorithm for an exact solution. Instead, the numerical example 

provided in this study will take advantage of the unique structure of the Beltway and solve the 

problem heuristically by the following steps: 

 

Step 1:  Divide the Beltway into P segments with equal length                       .  

Step 2:  Choose the site closest to the center of each segment to form the location site M. 

Step 3:  Assign response units to these locations and decide Y according to Equation 1. 

Step 4:  For each site   , find the segment   it belongs and the center location    for this segment, 

then assign response unit at    for site   by following Equation 4. 

 

Strategy-III  

In practice, traffic management agencies could also position standing-by units at their 

traffic operation center (TOC). One can illustrate their response strategy as follows: 

 

Step1: 

                                      (6-7) 

Step2: If the response agency has one TOC (as in the numerical example), then 

                                                            (6-8) 

 

If multiple TOC are available, then one needs to find the closest one for each site. The response 

time can then be uniquely determined from all regions I to the region where the TOC locates. 

 

Strategies based on the proposed p-median model 

Following the same arguments by Geroliminis et al. (2009), this study developed an 

optimal incident response strategy based on the traditional p-median model, which is both 

effective and convenient for implementation. The underlying assumption for this method is that 
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the occurrence of incidents on a given freeway segment follows a Poisson distribution, and the 

probability for more than two accidents occurring during the same sliced time period on the same 

segment is negligible (i.e., an average of 0.2 on I-495 Capital Beltway). Following previous 

studies in the literature, the objective function of a traffic management agency can be formulated 

as follows: 

 

                                                                                                               (6-9)                  

 

where: tij represents the travel cost from location j to freeway segment i. For convenience of 

illustration, this model does not consider intra-zonal times (assume tii =0), and uses the average 

travel time based on field data. The model can be further extended to consider speed variation 

and uncertainties in the future work. 

Note that both the demand and the supply sides are subjected to the following constraints: 

1) every freeway segment i must be served; 2) a response unit can only be dispatched from 

location j if it is available (yj=1); and 3) the total number of available response units is limited by 

available resources (P). Constraint 1 can be expressed as: 

 

                                                                                                                                  (6-10) 

Constraint 2 is formulated as: 

                                                                                                                                (6-11) 

By introducing a large number L (which should be equal to or larger than I), constraint 2 can be 

re-formulated as: 

 

                                                                                                                              (6-12) 

Similarly, constraint 3 can simply be expressed as: 

                                                                                                                                                    (6-13) 

Given the formulations, the allocation task for incident response units becomes a p-
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median problem with the following two binary sets of decision variables: 

 

 

 
 

One can then apply the model to decide the optimal locations for available incident 

response vehicles, given the empirical distribution of accidents on each freeway segment and the 

corresponding travel cost matrix.   

 

6.4 Numerical results 

Note that the numerical results for I-495 Capital Beltway presented hereafter were 

produced with GAMS, a commercial optimization software package. The annual response time 

and the associated costs and benefits were also computed for comparison with other experience-

based strategies. 

 
Study Site 

The study site is the Capital Beltway (I-495/I-95) in Maryland, ranging from the DC-VA 

state Line at the Woodrow Wilson Bridge to the VA Line at the American Legion Bridge (see 

Figure 5-1). The Beltway has 30 exits distributed over 42 miles, one of the major corridors 

managed by CHART.  
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Figure 6-1: Study Links in the Capital Beltway (I-495/I-95) in Maryland 

  
TOC-3 (Traffic Operation Center-3) of CHART, currently located at exit 25, has 11 field 

operations units to manage incidents on I-95, I-270, US-50, MD-295 as well as the Capital 

Beltway in Prince George’s and Montgomery Counties. They operate over 16 hours/day (5 AM – 

9 PM) on weekdays. 

 The proposed model was applied to determine the optimized locations for their EMS 

units over the Capital Beltway to minimize the total and average incidents response times during 

AM peak hours (7:00 – 9:30) on weekdays. Travel speeds on each freeway segment were 

collected from the freeway detectors documented by CATT (the Center for Advanced 

Transportation Technology) laboratory at the University of Maryland.  

 

T
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Figure 6-2: Average Traffic Speed Patterns for the AM Peak Hours by Day of Week  

(I-495 Outer Loop) 
 

 
Figure 6-3: Average Traffic Speed Patterns for the AM Peak Hours by Day of Week  

(I-495 Inner Loop) 

Traffic 

 Traffic 
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Figures 6-2 and 6-3 summarize the average speed during the morning peak period for 

different days of the week in 2009.  The figures indicate that the average traffic speeds on most 

segments exhibited very similar patterns over different weekdays and for both directions. Only 

segments from exit 27 to exit 31 (about 5 miles) in the Outer Loop exhibited a significant 

fluctuation. Since it is a small portion of the entire network, this study will not consider travel 

time variation as one of the model variables. 

The results in Figures 6-2 and 6-3 show very different traffic conditions in the opposite 

directions. Therefore, travel times (response times) for response units would vary significantly, 

depending on the travel direction. Thus, travel time data used in this study are asymmetric. The 

average morning peak travel time on each highway segment in 2010 was used in the numerical 

analysis.  

 

Data 

This study used the incident data from CHART II Database to evaluate the performance 

of different strategies. CHART database includes eight incident types:  

1. Debris in Roadway 
2. Collision, Personal Injury 
3. Collision, Property Damage 
4. Collision, Fatality 
5. Disabled on Road 
6. Emergency Roadwork 
7. Police Activity 
8. Off Road Activity 

 
Notably, incidents with a different nature and severity could result in different traffic 

impacts.  Prior to having the incident severity information from field observations, CHART 

views all detected incidents equally and responds to them sequentially.  However, if incident 

severity has been verified, CHART will give the response priority to more severe incidents.  

Since the focus of this model is to minimize the response time but not the clearance time, the 

numerical results, presented below with the response allocation models, were based only on the 

spatial distribution of incident frequency.  

For convenience of analysis, both the demand (incidents) and supply (response units) are 

assumed to be located at the nodes (i.e., freeway exits) of each link, and the travel times between 

nodes were calculated based on the procedure described previously. Incident data from 2006 to 
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2010 were used to evaluate the performance with different measures of effectiveness (MOE), 

where the data from 2006 to 2008 were for model calibration, and 2009 and 2010 data were for 

evaluation.  

The incident probability on freeway segment i, Pr (τi = 1), is estimated based on the 

three-year (2006-2008) data during AM peak hours (7:00 – 9:30). Figure 6-4 shows incident 

frequencies on different freeway segments, which fluctuate significantly across the study area. 

The location exhibiting the highest frequency was at exit 27, followed by exit 4. Given the travel 

time matrix and the incident frequency data, Table 6-1 presents the optimal set of locations 

produced with the four models discussed previously, assuming that the available response units 

vary from one to 11. 

 
Figure 6-4: Average Annual Incident Frequency during AM Peak Hours by Location 

 
The set of locations for SHA to deploy the response units under all candidate strategies is 

shown in Table 6-1. TOC’s current strategy is to allocate all available units at the TOC (at exit 

25). Traffic managers may also choose to assign one response unit to each exit experiencing high 

accident frequency by starting from the highest one (HF), or evenly distribute all available 

response units over the target network (ED). CHART had 11 incident response vehicles in 2010 

for TOC to serve its coverage area. These four candidate strategies were applied to the 2008 to 

2010 incident data to compare their response efficiency. The total incidents over the target 

network were 1102, 1167, and 790 for AM peak hours in 2008, 2009, and 2010, respectively.  
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Table 6-1: Assigned Locations for Available Response Units by Strategy 

No. of Units 

Available 

Assigned Exit(s) by 

OPT* TOC HF ED 

1 23 25 27 22 

2 7, 30 N/A 4, 27 11, 31 

3 4, 22, 33 N/A 3, 4, 27 7, 22, 34 

4 4, 20, 29, 35 N/A 3, 4, 27, 33 4, 16, 27, 36 

5 4, 17, 25, 30, 35 N/A 3, 4, 27, 28, 33 4, 13, 22, 29, 38 

6 3, 9, 19, 25, 30, 35 N/A 3, 4, 27, 28, 30, 33 
4, 11, 19, 24, 31, 

38 

7 
3, 9, 19, 25, 30, 34, 

40 
N/A 

3, 4, 27, 28, 29,  

30, 33 

3, 9, 15, 22, 27, 

33, 38 

8 
3, 9, 16, 20, 25, 30, 

34, 40 
N/A 

3, 4, 20, 27, 28, 

29,  30, 33 

3, 9, 13, 19, 24, 

28, 33, 39 

9 
3, 9, 16, 20, 23, 27, 

30, 34, 40 
N/A 

2, 3, 4, 20, 27, 28, 

29,  30, 33 

3, 7, 11, 17, 22, 

25, 30, 34, 39 

10 
2, 4, 9, 16, 20, 23, 

27, 30, 34, 40 
N/A 

2, 3, 4, 20, 27, 28, 

29,  30, 31, 33 

3, 7, 11, 15, 19, 

23, 28, 31, 34, 39 

11 
2, 4, 9, 16, 20, 23, 

27, 28, 30, 34, 40 
N/A 

2, 3, 4, 20, 24, 27, 

28, 29,  30, 31, 33 

3, 7, 9, 13, 17, 22, 

25, 28, 31, 35, 39 

*OPT: the proposed model; HF: to the top N (= available units) high incident-frequency locations; TOC: stationed 
all vehicles at the traffic operations center; ED: evenly distributed. 
 



61 
 

  

 
* Note that the total travel time under the TOC strategy was constant irrespective of the available fleet size 

Figure 6-5: Total Travel Times (in minutes) by Incident Response Strategy 

Year 

Year Year 
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Figure 6-5 illustrates the estimated total travel time (response times) by allocating 

response units according to each strategy.  Note that the total travel time under the TOC strategy 

was constant irrespective of the available fleet size, and hence only its results from the first 

scenario were shown in the figure. 

As shown in the graphical results, the proposed model consistently outperforms other 

strategies in most cases across all three years. The only exception is for the single unit case 

where the system randomness can dictate the performance. For instance, for the response unit 

size of five, the estimated total travel times by OPT, HF, and ED are 2194, 3302, 2630 minutes, 

respectively, for year 2009. These differences imply that the total travel time with the OPT 

strategy would be reduced by about 34 percent and 17 percent compared with HF and ED, 

respectively. The response time savings are also significant for 2008 and 2010. Overall, the 

percentage improvement increases with the number of available response units and the incident 

frequency. 

Note that given the small chance of concurrently detecting several incidents on the same 

subsgement of the I495 Capital Beltway, SHA can maintain a small size of response teams by 

positioning all standing-by units at the TOC center. The trade-off to the cost savings, however, 

could be a long response time if an incident happens at a remote location. Given the huge cost of 

having an extended delay on congested freeways such as the I-495 Capital Beltway, this strategy 

is unlikely to outperform any other strategies.  

 

The optimal fleet size from the Cost-Benefit Perspective 

Note that the above analysis provides the optimal deployment strategy for the available 

EMS units. However, in view of the societal cost and the diminishing resources for traffic 

management, one shall further explore the optimal number of EMS under the projected 

distribution of incidents and traffic patterns. The total societal cost reduction due to an efficient 

incident response strategy includes the savings on incident-induced delay, fuel consumption, and 

emissions.  

Various formulas have been proposed in the literature to estimate delays and the 

associated benefits. To be consistent with the practice of SHA and take advantage of the locally 

calibrated parameters, this research adopts the following procedure for total delay and direct 

benefit estimation (Chang, 2009): 
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                                                                                              (6-14) 

where: 

D is total excessive delay incurred by the incidents on top of the recurrent congestion; 

f is traffic volume (vplph) at the segment i; 

b and n are the number of lanes blocked and the total number of lanes, respectively; 

d is the average incident duration (hours) at the segment i; 

N is the total number of incidents at the segment i; and μ, φ, θ, and γ are parameters. This study used -10.19, 2.8, 1.4, and 1.78, respectively, as 

recommended by CHART.  

Table 6-2 shows the additional information required to estimate total delay caused by 

incidents occurring during the morning peak hours in 2008 through 2010. Due to the lack of 

traffic volume during each incident period this study used the adjusted Average Annual Daily 

Traffic (AADT) volume as a proxy factor. The incident duration is defined as the sum of 

response time and clearance time, where the latter was obtained directly from the CHART 

database and the former was computed with the proposed optimal model.  

 

Table 6-2: Traffic and Incident Information Used to Estimate Incident-Induced Delays 

Variables 2008 2009 2010 

AADT on I-495 189,383 195,238 195,171 

PHF 0.95 0.95 0.95 

Adjusted AADT for Peak Hours 199,350 205,513 205,443 

Number of Lanes (one direction) 4 4 4 

Average Clearance Time with CHART Response 

(minutes) 
26.30 23.85 16.74 

Average Lane Blockage due to Incidents 1 1 1 

  

Using Equation 6-13 and information in Table 6-2, the total delays caused by incidents, 

assumed to be responded to by each candidate strategy, are summarized in Figure 6-6. Similar to 

the results in Figure 6-5, the developed strategy (OPT) clearly outperforms other strategies in 

most scenarios. For example, with a unit size of 10, the total delays estimated for year 2009 are 
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403587, 436149, and 416252 vehicle-hours for OPT, HF, and ED, respectively. The proposed 

strategy, OPT, reduces the total delay by about 55 percent and 13 percent compared with HF and 

ED, respectively. 

 

 

 
Figure 6-6: Total Delays (in vehicle-hour) for Incident Responses by Strategy 

Year 

Year 

Year 
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Based on the computed total delay, one can estimate the resulting cost savings with the 

following procedures: 

Step 1: Compute the total delay reduction with each candidate strategy. 

Step 2: Estimate the fuel consumption and emissions from the delay reduction using  

            the following information.   

• Fuel consumption for passenger cars: 0.156 gallons of gasoline / hour of delay (Ohio Air 

Quality Development Authority) 

• HC: 13.073 grams / hour of delay (provided by MDOT in 2000) 

• CO: 146.831 grams / hour of delay (provided by MDOT in 2000) 

• NO: 6.261 grams / hour of delay (provided by MDOT in 2000) 

• CO2: 19.56 lbs CO2 / gallon of gasoline (Energy Information Administration) 

Step 3: Convert the saved delay, fuel, and emissions to the monetary value 

 Similar to Step 3, these following conversion factors were used to estimate the reduced 

delay and associated by-products in the total monetary value: 

• Delay: $26.58/ hour (U.S. Census Bureau in 2006) 

• Fuel: $3.85/gallon (Apr.- Sep.) , 2.72/gallon(Energy Information Administration in 2008) 

               $2.32/gallon (Energy Information Administration in 2009) 

• HC: $6,700/ton (DeCorla-Souza, 1998) 

• CO: $6,360/ton (DeCorla-Souza, 1998) 

• NO: $12,875/ton (DeCorla-Souza, 1998) 

• CO2: $23 / metric ton (CBO (Congressional Budget Office)’s cost estimate for S. 2191,    

               America’s Climate Security Act of 2007)  

 To analyze how the additional response units would contribute to the system’s efficiency, 

this study has evaluated the marginal benefit/cost for adding another unit to the EMS team, 

ranging from 1 to 11 units, given the estimated marginal cost by SHA.  Based on the results 

shown in Figure 6-7, the marginal benefit/cost first decreases as the number of response units 

increase, but the pattern becomes relatively flat if deploying more than 7 units. Therefore, the 

benefits of adding additional response units become insignificant when the size of the response 

fleet is larger than 7, although the B/C ratio could still be greater than 1. The pattern is consistent 

over the three-year period, although the magnitude of B/C ratio fluctuates from year to year. The 
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information produced by this analysis can serve as the basis for CHART to decide the most cost-

beneficial fleet size. 

 
Figure 6-7: Marginal Benefit-Cost Ratios for adding an Additional Response Unit 
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CHAPTER 7: Conclusions 
 

7.1 Conclusions 

This study was focused on identifying potential areas for CHART to enhance its 

operations efficiency and to maximize the resulting benefits under existing resource constraints.  

Its core tasks cover three imperative issues: (1) understanding critical factors contributing to an 

increase in incident response and clearance times; (2) designing a deployment strategy to 

optimally assign available highway patrol units to minimize incident response times based on the 

temporal and spatial distributions of historical incidents; and (3) developing reliable models to 

predict the required duration of a detected incident and to identify critical contributing factors.  

Some critical research findings summarized below could be informative for CHART to 

effectively redesign and improve its incident response strategies: 

• Using the incident data from 2006 to 2011 on the I-495 Capital Beltway, this research has 

shown the potential for CHART to significantly reduce its response efficiency and to 

determine the optimal fleet size by using an optimal vehicle assignment model. 

• The incident data collected by CHART can be integrated with information in MAARS to 

develop a reliable model to predict the required clearance duration of a detected incident. 

Such vital data can serve as the basis for estimating the range of incident impact and 

designing responsive traveler information systems. 

• CHART’s response efficiency is not consistent, varying with factors such as incident 

severity, traffic congestion, weather conditions, fatalities, and pavement conditions. For 

example, the average response time for property-damage only incidents is longer than for 

those with injuries and/or fatalities. 

• All CHART’s response centers consistently took shorter times to respond to incidents 

resulting in more traffic impacts such as causing multiple lane blockage or fatalities. 

• The average response times among CHART’s five operations centers differ significantly: 

TOC7 exhibited the longest average of around 9.5 minutes and AOC had the shortest 

time of 4.5 minutes from 2007-2009. 

• The distribution of available resources (e.g., tow trucks and staff size) among CHART’s 

five operations centers significantly affects the efficiency of their response. 
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• The resulting clearance time of a detected incident depends on various factors, including: 

incident nature and severity, the need and availability of any special equipment, the 

coordination between all responsible agencies (e.g., police, fire department, medical 

team), and incident location. 

• Truck involvement, multi-lane closure, and fatalities are three critical factors contributing 

to most excessively long incident clearance times. 

• Most incidents (83 percent) involving fatalities took more than two hours to recover the 

roadway traffic condition, revealing the need for better coordination with responsible 

medical agencies. 

• The efficiency of incident clearance of CHART’s five response centers varies with the 

weather and environmental conditions; i.e., the average clearance duration at night time 

and/or a snow condition is substantially longer than the duration under day time and 

normal weather environments. 

• The discrepancies in the average incident clearance time among CHART’s five response 

centers reflect not only the difference in each center’s responded incident types and 

frequency, but also in the distribution of the required equipment/vehicles and staff to 

accomplish the mission. 

 

In summary, using the information from CHART and MAARS, this research has 

identified critical factors affecting the CHART’s efficiency in incident response and clearance 

and produced reliable models to improve its performance in incident traffic management. The 

optimal allocation model will enable each operational center to best deploy available patrol 

vehicles along its responsible highway networks and to select the most cost-benefit fleet size 

under the resource constraints. CHART can also apply the set of prediction models developed in 

this research to estimate the required clearance duration of a detected incident, thereby 

minimizing the resulting congestion within the impact boundaries via some real-time traffic 

control strategies. Incorporating any of those developed models into current practice will 

undoubtedly enhance CHART’s operational quality and significantly increase its effectiveness in 

minimizing non-recurrent congestion in this region. 
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7.2 Recommendations 

Despite the progress made in this research on improving incident response and clearance 

operations, much remains to be done to contend with the ever-increasing congestion in this 

region. Hence, based on the analysis results reported in this project, CHART may consider 

adopting the following recommendations, especially in view of the diminishing resources for 

expanding its operations: 

 

Incident data collection and recording 

• All factors affecting incident response time and clearance duration need to be precisely 

collected and recorded in the database. 

• Neither CHART nor MAARS records all critical factors affecting the incident clearance 

operations, so some efforts will be needed to merge these two mutually supplemental data 

systems. 

• Both datasets should have a reliable quality control mechanism to filter faculty data and 

identify the data precision level (e.g., 5 minutes). The large number of short duration data 

(e.g., less than 2 minutes) that heavily bias the sample distribution makes model 

development an extremely difficult task. 

• Data recording efforts should be improved as both datasets contain a large percentage of 

missing data (e.g., number of blocked lanes) for each recorded incident.  

• Classifying incident data by the severity level and the resulting blocked lanes seems a 

promising way to develop a comprehensive set of prediction models for incident 

clearance duration. 

• Both CHART and MAARS should use a precise geographical coordinate obtained via 

GPS to pinpoint the exact location of every reported incident.  By doing so, both 

databases can produce more reliable information than with a text-based reference to any 

special landmark or feature, such as “Howard County Border” or “Fort McHenry Toll 

Plaza.”  

• In CHART’s database, the location_text field should be separated into a route_prefix, 

route_number, and intersecting_route_prefix, intersecting_route_number. The route 

number and intersecting route number should be strictly number-based. 
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• The route_prefix and intersecting_route_prefix in CHART’s database should be either 

code-based, (i.e., 0 = IS, 1 = US, 2 = MD, 3 = CO) or restricted to an enumerated data 

type, allowing users to select only IS, US, MD, or CO. If the accident does not occur at 

an intersection, the intersecting_route_number and intersecting_route_prefix should be 

left blank. 

 

Incident response and traffic management 

• Due to the performance discrepancies among five local response centers, CHART should 

consider allocating available resources and personnel to each operational center, based on 

the distribution of incident frequency and severity within their responsible region. 

• From the spatial distribution of incidents over different times of day in each target 

highway network over the past several years, CHART can deploy its highway patrol units 

with an optimized strategy to minimize the resulting incident response times.  

• To improve performance efficiency, CHART should enhance its collaboration with other 

responsible agencies (e.g., police, fire, and medical units) during severe incidents that 

block multiple lanes or cause injuries or fatalities. 

• Existing guidelines for coordination between CHART and all responsible agencies should 

be enhanced to reduce excessively long response and clearance times for severe incidents 

occurring at night and involving heavy vehicles.  

• CHART should consider conducting an annual review of each operations center’s 

efficiency, available resources, and the frequency and nature of each encountered 

incident. The review results could serve as the basis for CHART to determine the optimal 

fleet size and personnel level for each operations center to maximize the cost-benefit ratio 

of its incident response performance.  

• CHART should consider developing a set of on-line models to predict the clearance time 

of various types of incidents based on its rich databases and information in MAARS, and 

assist each operations center to use such information to estimate the resulting traffic 

impact during the incident management period.  

• The estimated clearance duration predicted by a reliable model can be used by CHART’s 

traveler information systems to inform en-route motorists of traffic conditions, offering a 



71 
 

basis for the decision makers to determine whether or not a detour plan should be 

implemented during the incident response period. 
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