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EXECUTIVE SUMMARY 
 
 
A leading cause of death and injury in our Nation can be attributed to roadway crashes, with over 
6 million reported annually between 1990 and 2000 (NHTSA, 2004). The frictional properties of 
road surfaces were listed as major factors in the cause of crashes, which in 2011 exceeded 32,000 
fatalities in the United States. SHA is therefore tasked with the responsibility of ensuring that hot 
mix asphalt (HMA) used in road surface construction meets the stipulated requirements 
including frictional characteristics and skid resistance. However, the conventional methods being 
used by SHA in assessing and evaluating HMA surface mix are laborious, time-consuming, and 
expensive, hence the need for alternative methodologies that can be faster, more reliable, cost-
effective, and nondestructive in nature. This research project included the development of 
methodologies that utilize spectral properties and characteristics of aggregate samples such as 
their wavelength and reflectance.  
 
The FieldSpec 4 spectroradiometer (FS4), developed by Analytical Spectral Devices (ASD), 
which is now known as PANalytical was utilized in this Project. The FS4 is recognized as one of 
the best portable high-resolution spectroradiometers for a wide range of scientific and 
engineering applications. Its 3 nanometer (nm) Visible-Near Infrared (VNIR) and 8 nm 
Shortwave Infrared (SWIR) spectral resolutions provide excellent spectral performance across 
the full range of the EMS (350 nm to 2500 nm). These superior spectral resolutions make it 
possible to detect and identify a wide variety of geospatial features and their 
elements/compounds. Due to the size of the aggregate samples (less than 2 centimeters in 
length), an ASD Turntable was also acquired in order to optimize the data acquisition process. 
The ASD Turntable, contains its own light source (4000 hour halogen light), and transforms the 
heterogeneity of the aggregate samples into a kind of homogeneous sample, thereby ensuring 
representative spectra for the samples that were extracted and collected more accurately and 
faster.  

Two different methodologies were employed in this Project: 1 – Grams IQ Chemometrics 
Method and 2 – Neural Network (NN) Method. This multi-pronged approach, when proven, will 
undoubtedly offer the SHA options and flexibility in selecting the appropriate methodology for 
validating aggregate source and to some extent determining their properties. The spectra of 42 
aggregate samples from 19 different quarries were extracted using the FS4, and the spectral data 
were analyzed using both Chemometrics and NN methodologies. The results obtained from both 
methodologies appear encouraging. The Chemometrics was able to discriminate limestone base 
on the quarry locations. To a limited extent, this methodology was able to explain some of the 
aggregates’ frictional and physical variability within a given quarry over a period of time, thus 
making it a useful diagnostic tool. The NN, which relies heavily on the variance of the training 
set, was able to provide outstanding parameter estimations. Thus the NN is a viable solution for 
providing quick parameter estimations, based solely on the optical spectrographic measurement 
of the aggregate samples. It is hoped that these methodologies will enhance the SHA’s 
operational process by reducing the time and cost of evaluating HMA surface mix.  
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1.0. INTRODUCTION  
Roadway crashes are a leading cause of death and injury. Between 1990 and 2000, an average of 
6.4 million highway crashes occurred annually nationwide (NHTSA 2004). In 2011, 32,310 
people died in motor vehicle crashes, down 1.7 percent from 32,885 in 2010, according to the 
U.S. Department of Transportation's National Center for Statistics and Analysis of the National 
Highway Traffic Safety Administration (Liang 2013). The frictional properties of pavement 
surfaces and roadway condition play an important role in highway safety (Henry 2000). 
Pavement surfaces must maintain an adequate level of friction at the tire pavement interface in 
order to provide a safe surface for traveling vehicles (Liang 2013). The abrasion that occurs in  
asphalt concrete pavement over time from cars and trucks can polish the surface of the hot mix 
asphalt (HMA) and reduce friction, creating a serious safety concern, particularly under wet 
conditions. The Federal Highway Administration (FHWA) issued a Wet Skid Accident 
Reduction Program (Technical Advisory 5040.17) in 1980 in order to encourage state highway 
agencies to minimize wet weather skidding accidents by identifying and improving the sections 
of roadways with high occurrence of skid accidents and developing new surfaces at these 
sections to provide adequate and long-lasting skid resistance properties. The 1980 Technical 
Advisory was superseded in 2010 by a new advisory of Pavement Friction Management (FHWA 
2010). 
 
It is therefore pertinent that the SHA ensures that flexible pavements that are being constructed 
or repaved using HMA have adequate skid resistance. Since the frictional characteristics of 
HMA are mainly influenced by the coarse aggregate exposed at the surface, the selection of the 
surface mix aggregates with adequate frictional and polishing characteristics and mineralogy of 
rock are crucial in providing the public with an acceptable level of friction on the roadway 
surface. To ensure that the surface mix aggregates that have adequate frictional and durability 
properties are utilized during construction, it is important to verify that the original source 
(quarry) of the aggregate has rock of excellent texture and the required mineralogy. Knowledge 
of the properties of minerals present in quarry rocks, as well as the preparation method can 
provide an excellent clue as to the suitability of the resulting aggregates. However, the quality 
assurance and quality control (QA/QC) procedures (Dynamic Friction Test, British Pendulum 
Test, and Acid Insoluble Residue Test) routinely used are time-consuming, expensive and not 
always reliable. With limited financial resources, there is a growing need for the development of 
rapid, cost-effective, nondestructive and accurate methods for assessing the quality of HMA 
surface mix aggregate’s original source. 
 
This research developed methodologies for using the portable spectroradiometer (ASD FieldSpec 
4), a visible/infrared imaging spectrometer, for the validation of source approval of HMA surface 
mix aggregate and verified that the actual aggregate used during production matched the 
preapproved sources. Promising recent studies have shown that the portable FS4 can be used to 
determine the texture, mineralogy and composition of rocks as well as physical properties of 
aggregates (Schneider et al, 2009; Waiser et al, 2007; He and Song, 2006; Berg and Jarrard, 
2002; Huntington et al 2010, and Sgavetti et al 2006). 
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2.0. LITERATURE REVIEW 
A review of existing literature which focused on current methodologies used for validating the 
original source of HMA surface mix aggregates was performed. Sources such as Science Direct, 
Google, Transportation Research Board (TRB), United States Imagery and Geospatial 
Information Services (USIGIS), and the State Department of Transportation (DOT) websites 
were queried.  
 
Over 100 documents were identified from this search and logged into the literature review 
database. The current state-of-the-practice was examined and documented, including but not 
limited to case studies of various states and other entities that have developed various 
methodologies for the validation process. Various validation methods and specifications were 
considered in order to assess the speed, accuracy, efficiency, versatility, safety and cost-
effectiveness of these techniques. The information collected from the review was utilized to aid 
in the development of the spectroradiometric methodologies for the validation process. The 
various methodologies were divided into two categories: the conventional methods and fast, non-
destructive methods.  
 
2.1. Overview of Conventional Methods  
The frictional characteristics of HMA are influenced by the coarse aggregate exposed at the 
surface; therefore the selection of the surface mix aggregates with adequate frictional 
characteristics is crucial in providing the public with an acceptable level of friction on the 
roadway surface. Pavement surfaces must maintain an adequate level of friction at the tire 
pavement interface in order to provide a safe surface for traveling vehicles (Liang 2013). In 
ensuring that the surface mix aggregates that have adequate frictional and durability properties 
are utilized during construction, it is important to verify that the original source (quarry) of the 
aggregate has rock of adequate high friction texture and mineralogy.  Knowledge of the mineral 
properties present in the aggregate as well as preparation methods of the aggregates, which can 
provide an excellent clue as to the suitability of the resulting aggregates, is very important.  
However, the QA/QC procedures routinely used are time-consuming, expensive and 
cumbersome. The conventional method usually includes the following tests on the aggregates:      

● Los Angeles Abrasion Test (ASTM C535) 

● British Pendulum Test (ASTM E303) 

● Dynamic Friction Test (ASTM E 1911) 

● Soundness Test (ASTM C88-90) 

● Acid Insoluble Residue for Carbonate Aggregate (ASTM D3042) 

● Petrography for Non-Carbonate Aggregate (ASTM C296-90) 

According to Groeger et al. (2010), another survey of the specific methods being used by the 
states to control skid resistance was conducted by the Louisiana DOT in 2005/2006. The survey 
contains information from 27 states and Washington, DC. Table 1 contains a summary of the 
different methods used by these states in 2010. 
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Table 1: Methods used by US Transportation Agencies to Evaluate Skid Resistance Properties 

(Groeger et al, 2010) 

Method Agencies 

British Pendulum (BPN) New Jersey, Alabama 
Acid Insoluble Residual (AIR) Arkansas, Oklahoma, Wyoming, Washington, DC 
 Sulfate Soundness  Indiana 
Skid Trailer California, Florida, Georgia, Iowa, Mississippi, Montana, 

Nevada 
Multiple Methods Tennessee (BPN, AIR, Percent Lime, Variation of Micro-

Deval) 
Texas (BPN, AIR, LA Abrasion, Soundness, Skid Trailer) 
New York (AIR, Skid Trailer) 
Pennsylvania (Petrographic, BPN, AIR) 
Virginia (Geology, Skid Trailer, Local Experience) 
West Virginia (AIR, Skid Trailer) 

Dynamic Friction Tester, BPN Maryland  
No Method-Restrictions Delaware (Use only Maryland approved quarries) 

Kansas (Based on historical performance) 
Minnesota (No carbonate aggregate in wearing course) 

 
In reviewing the conventional methods the advantages and limitations of each were taken into 
consideration. 
 
2.2. British Pendulum Test 
This is the most common test and is specified in American Society for Testing and Materials 
(ASTM) E303. It is a portable apparatus that includes a pendulum with a spring-loaded rubber 
slider mounted at one end. The pendulum drops from a constant height, strikes a constant surface 
area with its rubber slider, and completes its swing to a degree proportional to the difference 
between its initial energy and the energy expended in sliding over the specimen surface. The 
decreased resulting energy of the pendulum is measured by an indicator needle which is 
mechanically activated by the pendulum as it passes through its point of lowest swing. The 
needle comes to rest at the point where the pendulum reaches its maximum forward swing, and 
the British pendulum number (BPN) is read off an arc-scale opposite the needle point. 
 
2.2.1. Advantages  
It is one of the simplest and cheapest instruments used in the measurement of friction 
characteristics. It has the advantage of being easy to handle, both in the laboratory and in the 
field (Saito et al., 1996). 
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2.2.2. Limitations 
Although it is widely suggested that the British Pendulum measurement is largely governed by 
the microtexture of the pavement surface, experience has shown that the macrotexture can also 
affect the measurements (Fwa et al., 2003; Lee et al., 2005). Additionally, Fwa et al., 2003; Liu 
et al., 2004) showed that the British Pendulum measurements could be affected by the 
macrotexture of pavement surfaces, aggregate gap width, or the number of gaps between 
aggregates; therefore this test has a high degree of variability. The test can also lead to 
misleading results on coarse-textured test surfaces (Lee et al., 2005). Other researchers pointed 
out that the BPN exhibited unreliable behavior when tested on coarse-textured surfaces (Forde et 
al., 1976; Salt, 1977; Purushothaman et al., 1988). 
 
Another problem with using the British Pendulum Tester is an extensive and ineffective 
calibration procedure. According to Groeger et al., 2010, the following are the other limitations 
of the procedures: 

● The (BPN) after 9 hours of polishing is normally assumed to be the terminal polishing 
value for the aggregate. 

● Polish number is affected by the aggregate selection technique. 
● The additional time and polishing media can influence the outcome and might add more 

uncertainties to the prediction.  
 
2.3. Los Angeles Abrasion and Impact Test 
There are several methods to evaluate the potential of an aggregate to resist polishing made by 
traffic loading, and one test has been standardized under ASTM C535 and the American 
Association of State Highway and Transportation Officials (AASHTO) T 96. In the Los Angeles 
(LA) abrasion and impact test, the portion of aggregate retained on the #12 sieve is placed in a 
large rotating drum that has plates attached to its inner walls. A specified number of steel spheres 
are added to the drum, and it is rotated at 30 to 33 rotations per minute (rpm) for 500 revolutions.  
The material is then extracted and separated using the Sieve #12; the proportion of the materials 
remaining on the sieve is weighed. The difference between the new weight and the original 
weight is compared to the original weight and reported as LA value or percent loss. The LA 
abrasion and impact test is believed to assess an aggregate’s resistance to breakage rather than 
abrasion due to wear (Luce, 2006; Meninger, 2004). The advantage is that this test is fast and 
less cumbersome. 
 
2.3.1. Limitations 
It is a common practice to assume that aggregates with lower LA abrasion loss and higher 
specific gravity (specific gravity, which can be converted to density) have better resistance to 
polishing. Many researchers believe that the LA abrasion test and other physical tests, like the 
freeze-thaw test, may not yield good predictions of field friction. Additionally, they believe that 
the reliability of predicting aggregate field polishing resistance, using a single laboratory test, is 
poor (West et al., 2001; Kowalski, 2007; Prasanna et al., 1999) 
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2.4. Dynamic Friction Tester 
 The Dynamic Friction Testers (DFTs), as described by ASTM E 1911, consists of three rubber 
sliders and a motor that reaches 100 kilometer per hour (km/h) tangential speed. The rubber 
sliders are attached to a 350 mm circular disk by spring-like supports that facilitate the bounce 
back of the rubber sliders from the pavement surface. The test is started while the rotating disk is 
suspended over the pavement and driven by a motor to a particular tangential speed. The disk is 
then lowered, and the motor is disengaged. Water is sprayed on the rubber and pavement 
interface through surrounding pipes to simulate wet weather friction. By measuring the traction 
force in each rubber slider using transducers and considering the vertical pressure that is 
reasonably close to the contact pressure of vehicles, the coefficient of friction of the surface is 
determined. The DFT can measure a continuous spectrum of dynamic frictional coefficients on 
pavement surfaces over the range of 0 to 80km/h with good reproducibility (Vollor and Hanson, 
2006; Nippo, 2008). In addition, the DFT measurement at 20 km/h is an indication of the 
microtexture. 
 
2.4.1. Advantages 
The advantage of DFT is that it provides a measure of surface friction as a function of sliding 
speed, either in the field or in a laboratory. It may be used to determine the relative effects of 
various polishing techniques on materials or material combinations. 
 
2.4.2. Limitations 
The values measured in accordance with this method do not necessarily agree or directly 
correlate with those obtained from using other methods of determining friction properties or skid 
resistance (ASTM E 1911, 2009). As with most conventional methods, the turnaround time to 
obtain the results is long.  
 
2.5. Acid Insoluble Test for Carbonate Aggregates. 
The aim of the acid insoluble test is to determine the amount and size distribution of non-
carbonate (insoluble) material in carbonate aggregates (ASTM 3042, 2015). The test method 
covers determination of the percentage of insoluble residue in carbonate aggregates using 
hydrochloric acid solution to react the carbonates (ASTM 3042, 2015). The theory is based on 
the concept that the skid resistance of carbonate aggregates is related to the differential hardness 
of the minerals that constitute the aggregate. The softer minerals, in carbonate aggregate, usually 
wear away at a faster rate than the harder particles when subjected to polishing, and there is 
usually some attrition of the aggregate caused by the loss of softer particles. The advantage is 
that it is fast and less cumbersome.  
 
2.5.1. Limitations 
The test tends to reflect the general trend of latter polishing values, but polishing values are not 
readily statistically predictable from these tests. 
 
2.6. Petrographic Analysis 
Petrographic analysis of aggregates is normally performed in accordance with ASTM C296-90, 
& ASTM 295 in order to identify the mineral composition of aggregates and allow for the 
evaluation of predicted overall behavior. The general characteristics of the aggregate samples, 
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including maximum particle size, textures and shape, are usually examined and recorded first. 
The main rock types are then identified and the relative proportions of the constituents will be 
estimated using an optical (light) microscope. Color, grain size and degree of weathering are also 
recorded.   
 
2.6.1. Advantages and Limitations 
It is a valuable tool in understanding the polishing process and to state recommendations for the 
use of aggregates. It also offers a good quantitative evaluation capability. The limitation is that 
this test requires an estimation of the relative proportions of the constituent minerals in the 
aggregate, thereby causing the result to vary from test to test. 
 
2.7. Non Destructive Techniques for Aggregate Evaluation  
Unlike the traditional techniques/conventional methods used for aggregate evaluation, the non-
destructive technique provides a fast, accurate and cost-effective method to eliminate the long 
turnaround time from sampling to testing usually associated with the conventional methods. The 
non-destructive technique measures the mineralogical properties of the aggregates. 
 
2.7.1. Justification for the use of the Non-Destructive Technique 
There have been various studies in the past to correlate the skid resistance with mineralogical 
properties of aggregates. However, this section contains a comprehensive review of one of the 
studies performed by Kane et al., 2013. The objective of their work was to correlate the long-
term skid resistance of a road surfacing aggregate, as measured in the laboratory, to the 
mineralogical properties of the aggregates. Three types of aggregates were studied: greywacke, 
granite and limestone used in asphalt surfacing. Petrographic analyses were carried out in an 
attempt to correlate aggregate mineralogy to aggregate polishing and consequently to friction and 
skid resistance.    
 
Optical microscopy was used to conduct the petrographic analysis of the aggregates. To 
determine the evolution of friction with polishing cycles of both aggregates and asphalt 
specimens, the Wehner-Schulze apparatus was used. Kane et al (2013) introduced a new 
parameter called the Aggregate Hardness Parameter (AHP), which measured on aggregate 
specimens after 188,000 polishing cycles and was related to aggregate frictional coefficients. 
 
The AHP is defined in Equation 1 as the sum of two aggregate hardness parameters: 
              dmpM + cdM  …………….  (1) 
where the first term ( dmpM) is the aggregate’s average Mohr’s Scale hardness value and the 
second term (cdM) is the contrast of hardness. Both values, which are usually obtained from the 
petrographic examination of the aggregates, are expressed as follows: 
                dmpM =∑ dmi x pi  …………….  (2) 
                cdM = ∑ pi x dmi-dmb …………….  (3) 
Where dmi   is the Mohs Scale of Hardness of each mineral found in the aggregate, pi  is the 
percentage by mass of each mineral found in the aggregate and dmb   is the Mohs scale of 
hardness of the most abundant mineral found in the aggregate 
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Initial results indicated that aggregate hardness parameter is a good indicator of the frictional 
resistance of an aggregate. In addition to monitoring the evolution of the friction coefficient, 
profile measurements on aggregate mosaics were carried out using a confocal microscope in 
order to assess the evolution of texture (Kane et al (2013)). Microtexture measurements 
confirmed different levels of polishing for the different types of aggregates. Their findings 
confirmed that the skid resistance of road surfaces after a long period of use is driven by the 
characteristics of the aggregates in the asphalt. Kane et al (2013) discovered that the aggregate 
hardness parameter indicated the ability of an aggregate to retain its microtexture and its friction 
properties. From the prior literature search it is pertinent to share that any non-invasive technique 
that can determine the mineralogy of aggregate can be used to effectively determine the frictional 
characteristics of the aggregates. For this project, a literature search of the past techniques used 
to measure the mineralogy and microstructure of aggregates, both qualitatively and 
quantitatively, was completed. 
 
2.7.2. Laser Induced Breakdown Spectroscopy (LIBS) 
In 2012, the Transportation Research Board, through the Innovations Deserving Exploratory 
Analysis (IDEA) Program, investigated the feasibility of using a laser monitoring system to 
provide real-time data to characterize aggregate properties in a laboratory or field environment. 
The study made use of the known physical, chemical and mechanical properties and aggregate 
criteria as defined by AASHTO and ASTM, and correlated these properties with spectral 
emission data through Laser Induced Breakdown Spectroscopy (LIBS). LIBS technology was 
used to employ an automatic laser monitoring system in order to provide real-time data of 
aggregate quality in a field environment (Chesner and McMillan, 2012). In the study, a 
multivariate statistical modeling technique was used to provide information on the latent 
properties of the aggregate material in order to discriminate between aggregate types and identify 
specific aggregate properties (Chesner and McMillan, 2012). 
 
Three state DOTs -- New York (NYSDOT), Kansas (KSDOT), and Texas (TXDOT) -- 
participated in the research effort to demonstrate the subject technology LIBS. Each DOT 
supplied specific aggregate for laser calibration testing to determine if the technology could be 
used to identify whether specific aggregates were good or poor, as defined by the respective 
state’s specification criteria. Aggregates from New York were studied to see if the Acid 
Insoluble Residue (AIR) content of carbonate aggregates could be modeled and whether a 
compositional blend of noncarbonated rocks, which are almost entirely composed of quartz or 
silicate minerals, mixed with limestone could be quantified. 
 
Aggregates from Kansas were examined to determine whether the original (source) bed in a 
quarry, from which an unknown aggregate sample was extracted, could be identified by 
modeling the characteristics of the aggregate from each bed. D-cracking susceptible aggregates 
from Kansas were also analyzed to determine if modules could be developed to differentiate 
between aggregates that passed and failed KSDOT D-Cracking test criteria. Aggregates from 
Texas were examined to determine if a compositional blend of chert and quartz could be 
quantified (i.e., the percent chert in the blend, whether high and low reactive cherts could be 
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classified and whether four cherts with different degrees of alkali silica reactivity (ASR) could be 
differentiated.)   
 
The results of the research suggested that multivariate discriminate modeling of laser induced 
spectra can be used to correlate spectral output data with aggregate types and aggregate 
properties (Chesner and McMillan 2012). This was not surprising, since it is reasonable to 
assume that the engineering properties of aggregates as defined by AASHTO and ASTM test 
criteria are dependent in part on the chemical and mineralogical composition of the aggregate 
material (Chesner and McMillan, 2012). While such an assumption is reasonable it is worth 
noting that up until now few studies have effectively developed correlations between the 
chemical and mineralogical properties of aggregates, and most engineering properties. 
 
2.7.2.1. Advantages 
The LIBS provides a real time technique for evaluating the frictional characteristics of 
aggregates. According to Chesner and McMillan (2012), the turnaround times from sampling to 
the completion of testing vary widely depending on the test method but can range from a few 
hours to a few days to several weeks and even several months. Consequently, they observed that 
aggregate quality assurance is in great part dependent on the collection, testing, and preapproval 
of aggregate sources prior to the actual material production process. Subsequently, Chesner and 
McMillan (2012) observed that many agency quality assurance plans require that additional 
samples be collected during the production process to verify that the actual aggregate employed 
during production matches the preapproved sources. Unfortunately according to their 
observation, when such methods are employed, the pavement or concrete structure is typically in 
place by the time test results became available. In certain instances, failure of such verification to 
comply with the appropriate specification necessitates the removal and replacement of the newly 
installed structure. Subsequently, eliminating the long turnaround times from sampling to the 
completion of tests associated with the conventional method is the major advantage of the LIBS 
procedure. The procedure is also cost-effective and simple.   
 
2.7.2.2 Limitations:   
It is pertinent to note that LIBS technology adopted in the NCHRP IDEA Project 150 uses a 
laser-scanning system which is a type of active remote sensing procedure that ablates (removes) 
sections of the surface material/samples through vaporization. The results obtained through this 
method can vary depending on several factors including the power of the laser and resulting 
plasma.  
 
2.8. FieldSpec 4 Spectroradiometer 
The FieldSpec 4 Spectroradiometer (FS4) uses the principles of Visible and Near-infrared (NIR) 
reflectance spectrometry to determine the mineralogy and physical properties of aggregate. This 
technology provides an efficient and cost-effective alternative to the traditional lab-based 
analysis. With NIR reflectance analysis, rapid non-destructive measurements can be taken in the 
field or in a controlled laboratory environment (Kastanek and Greenwood, 2013). The instrument 
covers the visible (VIS) and the NIR regions of the electromagnetic spectrum (EMS). When the 
NIR energy interacts with the sample, part of the electromagnetic light ray can be absorbed, 
reflected, or transmitted through the sample (ASD Inc., 2012). Figure 1 shows all the possible 
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interactions of NIR with solids or target material (ASD Inc., 2012). The NIR spectra are further 
differentiated by the sample accessory used for spectra collection. Quantitative and qualitative 
calibration models can be developed from the spectra collected for rapid characterization of 
aggregates mineralogy and physical properties by using chemometrics software. GRAMS IQ, a 
multivariate chemometrics software from Thermo Fisher Scientific, Woodbridge, NJ, is usually 
used to create the quantitative and qualitative multivariate statistical models from the spectra 
derived from the FS4. 
 
Recent studies have shown that the portable FS4 can be used to determine the texture, 
mineralogy and composition of rocks as well as physical properties of aggregates (Schneider et 
al, 2009; Waiser et al, 2006; He and Song, 2006; Berg and Jarrard, 2002; Huntington et al 2010).   
 
 
 
2.8.1. Advantages    
It is an alternative method that eliminates the long turnaround time associated with the traditional 
methods without reduction of accuracy. According to Quattlebaum and Nusbaum, 2001, this 
nondestructive analytical technique takes advantage of characteristic absorption and scattering of 
photons resulting from OH- and H20 vibrational processes to accurately diagnose the mineralogy 
and composition of geological materials. Unlike LIBS, the FS4 employs passive remote sensing 
procedures, which utilize selected sections of EMS between 350-2500 nm (the VIS, NIR). This 
technique does not tamper with the sample surface. 
 
2.8.2. Limitation   
In order to derive maximum benefit from the use of the equipment, the qualitative and 
quantitative multivariate statistical models must be effectively developed with the appropriate 
software.  According to Zofka et al., 2013, spectrosocopic evaluation of aggregates will always 
be a challenging task, especially when dealing with aggregates from different compositional 
blends. In such cases more work is needed to develop robust and universal procedures.      
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Figure 1: Near-Infrared Interactions with Target Material (ASD Inc., 2012) 

 
2.9. Other Non-Destructive Methods  
Apart from the NCHRP IDEA Project 150, more work on using non-destructive testing for 
evaluation of aggregates properties was also conducted. Post and Crawford (2014) used the near 
infrared spectral for the identification of clay minerals. Satpathy et al., 2010 used hyperspectral 
remote sensing to provide physics-chemistry (mineralogy, chemistry, morphology) of the earth’s 
surface. Their methodology is useful for mapping potential host rocks, alteration assemblages 
and mineral characteristics. Some pure pixel end member for the target mineral and the 
backgrounds were used to account for the spectral angle mapping and matched filtering with the 
results were validated with respect of field study.  
 
Zofka et al. (2013) under the Second Strategic Highway Research Program (SHRP2) evaluated 
the use of portable spectroscopy devices and their capability to fingerprint typical construction 
materials. Fingerprinting of typical materials requires developing acceptable spectra of specified 
chemical compositions with laboratory-based equipment and then comparing the material being 
fingerprinted against those spectra (Zofka et al., 2013). On the basis of the above requirements 
they developed a library of reference spectra for common materials used in highway 
construction. They further developed relatively simple and easy-to-use non-destructive testing 
procedures and protocols that inspectors could use in the field to ensure quality construction. The 
Spectroscopic techniques evaluated in the laboratory included Fourier Transform Infrared (FTIR) 
spectroscopy, Size-exclusion Chromatography, Nuclear Magnetic Resonance (NMR), X-ray 
Fluorescence (XRF), and X-ray Diffraction (XRD). The materials used included epoxy coatings, 
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adhesives, traffic paints, Portland cement concrete (PCC) with chemical admixtures and curing 
compounds, asphalt binders, emulsions, and mixes with polymer additives. Through a 
comprehensive literature review, in combination with experience as well as survey and 
workshops results, they evaluated the most promising combinations of techniques and materials. 
The laboratory testing phase of the study indicated that three methods were most promising for 
field applications: FTIR, XRF and Raman. It was finally discovered that a compact FTIR 
spectrometer working in the Portland cement concrete (PCC) mode was the most successful 
device to fingerprint pure chemical compounds (i.e., epoxides, waterborne paints, polymers, and 
chemical additives) and to detect additives or contaminants in complex mixtures (i.e, PCC, 
asphalt binders, emulsion and mixes).    
 
Pavement friction, one of the main factors contributing to road safety, depends mainly on surface 
texture. However, despite its importance being corroborated by the numerous investigations 
attempting to predict it, the manner in which texture is related to friction remains widely 
unknown. Rado and Kane, 2014, explored the friction-texture relationship based on a new signal 
processing method called Huang–Hilbert Transformation, or HHT. This method allows empirical 
decomposition of a texture profile to a set of basic profiles in a limited number, called Intrinsic 
Mode Functions, or IMFs. Each IMF contains a given interval of amplitudes and frequencies. 
From the obtained IMFs, a set of four new functions called Base Intrinsic Mode Functions, or 
BIMF, was computed based on the frequency and power content of the underlying IMFs and was 
characterized using the Hilbert Transformation technique to obtain the scale-dependent norm 
frequency and amplitude profiles. Furthermore, these two parameters were correlated with the 
pavement friction from a multiple regression analysis. This analysis was applied to a set of 
texture and friction data measured through test track surfaces in France and lab samples of 
concrete in the United States. The textures and friction values were measured with the Circular 
Texture Meter (CTM) and the DFT, respectively. The results showed a good correlation between 
the BIMF's parameters to friction, thus opening a promising new means for characterizing 
texture in relation to friction.  
 
Moaveni et al., (2014), used aggregates imaging systems to develop regression-based statistical 
models for determining aggregate polishing and degradation trends by considering both rate and 
magnitude of changes in shape properties. Since aggregate gradation and shape properties are 
known to affect pavement mechanistic response and performance significantly, under repeated 
traffic loading, aggregate particles in pavement courses are routinely subjected to degradation 
through attrition, impact, grinding and polishing mechanism. In their investigation Moaveni et al 
(2014) used two advanced and validated aggregate imaging systems  –  an enhanced University 
of Illinois aggregate image analyzer (E-UIAIA) and a second-generation aggregate imaging 
system (AIMS-II)  – for capturing changes in shape and size properties of aggregate particles 
caused by breakage, abrasion, and polishing actions. They used the micro-Deval apparatus in the 
laboratory to evaluate field degradation and polishing resistance of 11 aggregate materials with 
different mineralogical properties, collected throughout Illinois and neighboring states. In their 
investigation, more than 26,000 particles were scanned with both imaging systems at various 
time intervals, and changes in aggregate morphological indexes were recorded. Despite 
differences in image acquisition and processing capabilities, both E-UIAIA and AIMS-II 
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successfully quantified changes in morphological properties of particles from micro-Deval tests. 
However, AIMS-II more closely reflected historical data on aggregates’ frictional properties 
obtained by the Illinois Department of Transportation.  
 

3.0. COMPARISON OF CURRENT AND PROPOSED METHODOLOGIES 
A comparison of current methodologies and the proposed spectroradiometric (FS4) methodology 
was conducted in order to assess the speed, accuracy, efficiency, versatility, safety, repeatability, 
and cost-effectiveness of each technique. These evaluating criteria are similar to those Wimssat 
et al. (2009) adopted in evaluating their developed high-speed nondestructive testing procedures 
for design evaluation and construction inspection. Three of the most promising methodologies 
currently used in evaluating the frictional characteristics of aggregates  –  BPN, DFT and LIBS  
– were compared with the proposed FS4 technique. The information collected from the review 
was utilized to aid in the development of the spectroradiometric methodologies for the validation 
process of the aggregate source. Table 2 shows the results of the comparison analysis developed 
in this study.  
 
From the literature study conducted and the results of the comparison analysis in Table 2, it was 
also shown that FS4 provides an efficient cost-effective alternative to traditional lab-based 
analysis of the frictional properties of aggregate. As mentioned earlier, with NIR reflectance 
analysis, rapid non-destructive measurements can be taken in the field or in a controlled 
laboratory environment. Quantitative calibration models can be developed for rapid 
characterization of aggregate frictional attributes and properties. In addressing the limitation of 
this technique, Kastanek and Greenwood, 2013 suggested that coupling this technology with 
hyperspectral imagery and improved spatial statistical methodologies breaks the bottleneck of 
sample collection and lab analysis and facilitates real-time aggregates characteristics assessment. 
Subsequently, the project shall entail the development of methodologies for using the portable 
FS4, for the validation of source approval of HMA surface mix aggregate as well as to verify that 
the actual aggregate used during production matches the preapproved sources. The FS4 will 
facilitate real time evaluation of the frictional characteristics of aggregates used in the production 
of HMA, without the conventional sample preparation and laboratory testing.   
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Table 2: Comparison of Constitutive Models Which Simulate Deformation Behavior of 
Granular Materials. 

 
 
The validation process of the original source of HMA surface mix aggregates involves the 
assessment/evaluation of the mineralogical and chemical composition, texture and physical 
properties, especially frictional characteristics of the quarry as well as the methodology for the 
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preparation of the aggregates from the quarry. As mentioned earlier, unlike LIBS, the FS4 
employs passive remote sensing procedures, which utilize selected sections of the EMS, between 
350 – 2500 nm (VIS - NIR). The reflected or emitted electromagnetic radiation from the sample 
(aggregate material) surfaces will be measured. This technique does not tamper with the sample 
surface. 
 
The spectra collected from the aggregates will be standardized to enable the spectrum of 
unknown materials to be compared to known material after calibration/correction consistently.  
 The high-resolution FS4 has been designed for faster, more precise spectral data collection. It is 
portable, possesses enhanced spectral resolution of 8 nm, and ruggedized for challenging field 
terrain. Its extended wireless range provides more flexibility in conducting field work easily. The 
FS4, with an 8 nm resolution will make it ideal for building spectral libraries especially when 
required to support critical missions/tasks, site validation, and groundtruthing. 
 

4.0. METHODOLOGIES  

4.1. Introduction 
Initially, three different methodologies were considered for this Project: 1 – Statistical Analysis 
System (SAS), 2 –Grams IQ Chemometrics, and 3 –Neural Network (NN). This multi-pronged 
approach was used in order to provide the SHA with flexible options in determining the most 
efficient and cost-effective methodology in validating the HMA surface mix aggregate. SAS, a 
suite of software originally developed at North Carolina State University, was supposed to be 
used to perform multivariate discriminate modeling of the spectra extracted from the aggregate 
samples. However, because of its stringent requirements, including the need for large and 
continuous datasets which were not available at that time, it was decided not to continue with it 
at this time. Future efforts will be geared toward the collection of more aggregate data samples 
which would then enable the use of SAS. Details of the other two methods (chemometrics and 
NN) are provided in subsequent sections below. 
 
4.2. Data – The Aggregate Samples 
A total of 42 aggregate samples from 19 different quarries were provided by the SHA to Morgan 
State University (MSU) for analyses using the FS4. The samples were carefully kept in the lab, 
in glass jars, under normal temperature and dry conditions. In order to maintain confidentiality of 
the quarries, identification numbers (IDs) were assigned to each of the samples (Appendix A). 
Great care was taken during the handling of each sample during the extraction of their spectra; 
all samples were returned to their respective jars after the spectra extractions were completed. 
 
4.3. Aggregate Spectra Extraction 
The aggregate samples were logged and identification numbers (IDs) were assigned to each 
sample jar. The jars were sorted and placed in ascending order on a clean table in the lab. The 
FieldSpec 4 and its Turntable were assembled on an adjacent table and turned on for 30 minutes 
in order to attain the optimum operational temperature based on the stipulated instructions from 
the manufacturer (ASD, Inc.) (Figure 2).   
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Figure 2. ASD FS4 Setup: (A) – FS4, (B) – Computer Control, and (C) – ASD Turntable. 

After 30 minutes, the aggregate samples were packed into a Petri dish (about a 53.2 mm 
sampling spot size) and placed on the ASD Turntable, which rotates at 22 rpm. The ASD 
Turntable enables the high accuracy analyses of irregularly shaped and non-homogeneous 
samples such as the aggregate samples. As the samples rotate underneath the contact probe, 10 
spectra were randomly selected for the Petri dish and averaged to produce one spectrum which is 
then saved as a text file in Radiance in “asd” format. After saving the extracted spectrum, it is 
displayed and checked for accuracy. Once the text file is in “asd” format, it can be displayed in 
Digital number (DN), Radiance (R), and 1/Log R. After collecting three spectra per aggregate 
sample, the ASD Turntable is switched off and the Petri dish is removed and replaced with 
another aggregate sample. A total of 2,100 radiance values and wavelength values (340 nm – 
2,400 nm) were collected for each spectrum. This procedure was executed, until all the aggregate 
sample spectra (a total of 1,260) were extracted and their text file labeled and saved in “asd” 
format. After completion of the spectra extraction process, all the text files were converted into 
ASCII text file and distributed for further analyses using different methodologies, including 
Chemometrics and Neural Network methods. 
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Table 3. SHA Aggregate Sample Statistics. 
 

Friction 
Category 

Number 
of 

Samples 

Specific Gravity LA BPN 

 
 

Average Std. 
Dev. 

Average Std. Dev. Average Std. Dev. 

1 1 1 2.778 0 28 0 42 0 
 
 

1 2.778 0 28 0 42 0 

2 4 2 2.678 .001 15 4.384 35.5 4.95 
 
 

4 2.746 0.108 15 2.304 N.A. N.A. 

3 10 8 2.884 0.113 16 2.653 30.42 2.968 
 
 

10 2.860 0.122 18 4.615 N.A. N.A. 

4 0        
 
 

       

5 24 22 2.742 0.059 21 3.435 26.182 2.889 
 
 

24 2.750 0.060 21 3.853 N.A. N.A. 

6 3 3 2.735 0.004 23 0.918 25.67 2.055 
 

 
3 2.735 0.004 23 0.918 N.A. N.A. 

 
Note(s): 
1 – In the ‘Number of Samples’, the left-most number is the total number of samples in that 
‘Friction Category.’ In the right-side split cell, the upper number is the number of samples that 
have all three parameters – SG, LA, and BPN. The lower number is the number of samples that 
have only SG and LA. 
 
The aggregate information given above is utilized by both the Chemometrics and Neural-
Network methodologies. These two methodologies are described in more detail in the following 
sections. 
 
 
5.0. CHEMOMETRICS METHOD 
 
5.1. Introduction  
This chapter contains data analysis of the spectra of 42 aggregate samples collected using the 
FieldSpec 4 Spectrometer. The analysis was conducted using the GRAMS IQ chemometrics 
software from Thermo Fisher Scientific, Woodbridge, NJ. The GRAMS Spectroscopy Software 
Suite is the premier solution for visualizing, processing and managing spectroscopy data offering 
broad compatibility with many different instrument data types and a simple user interface. The 
GRAMS software combines spectral data and reference data to predict class membership 
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(qualitative model). Detailed results from two quarries (Quarries 17 and 18) are presented in this 
Report. Results of the spectral analysis and blind test matching are also presented in this chapter.  
 
5.2. Research and Modeling Objectives 
A spectra library for each of the quarries was developed in order to be able to validate the source 
of the HMA surface aggregate and conduct classification models. The GRAMS IQ software, 
classification models compare the spectrum of an unknown aggregate sample to that of a group 
of known spectra. Through this process the model would be able to determine whether the 
unknown aggregate sample resembles any of the known aggregate samples. This classification 
model is especially useful for the validation of source approval of HMA surface aggregates. 
 
5.3. Brief Review of Multivariate Statistical Modeling 
GRAMS IQ software combines spectra data and reference data to develop qualitative 
(classification) and quantitative (concentration) models through the use of regression methods 
with statistics. In order to develop a qualitative (classification) model, GRAMS IQ uses 
discriminant analysis which is based on the Principal Component Analysis (PCA) compression 
of the spectral data into scores. PCA is a reduction technique that extracts from a large number of 
variables to a much smaller number of new variables, which account for most of the variability 
between samples and contain information from the entire spectrum (Cheewapramong, 2007). 
Thus, the PCA decomposes the training set spectra into mathematical spectra like loading 
vectors, factors, and principal components that represent the most common variations to all the 
data. The principal components scores, from spectra of samples in a training set, are then used to 
calculate the Mahalanobis matrices, which are derived from the Mahalanobis Distances (MHD), 
and discriminant models are then constructed.  
 
The Mahalanobis Distance (MHD), is the mathematical quantity that defines the position, size 
and shape of the ellipsoid for all clusters and is defined by a multidimensional distance D defined 
by the matrix equation as follows: 
D2= (x-x' )M(x-x ' )…………….  (4) 
Where D is the MHD, x is a vector consisting of optical readings at several wavelengths which 
describes the position in multidimensional space corresponding to the spectrum of a given 
sample, xi  is the  vector describing the position of a reference point in space, and M is the 
pooled inverse covariance matrix describing distance measures in the multidimensional space of 
interest (Mark and Tunnel (1985)).  
 
Samples with MHD less than 3 σ (three standard deviations) are considered to be members of the 
same group of spectra used to develop the model while spectra with MHD greater than 3 σ are 
considered to be Non-members (Figure 3). MHD from a statistical viewpoint takes the sample 
variability into account.  
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Figure 3. Nested Acceptance criteria used in M-distance (ASD 2012) 

 
The MHD can be described by an ellipsoid in multidimensional space that circumscribes the data 
(Cheewapramong, 2007). According to Cheewapramong, 2007, this method uses a matrix that 
describes the inverse of the matrix formed by pooling the within-group covariance matrices of all 
groups, which is generated by combining information from all the different materials of interest 
into a single matrix. 
 
The absorbance (log 1/R) spectra of aggregates coupled with reference data can be calibrated 
using GRAMS IQ to predict the frictional properties of the aggregates. GRAMS IQ uses the 
partial least squares (PLS) and principle component regression methods to develop quantitative 
models. A regression equation is usually formed to predict the physical property from the 
spectral measurements as follows: 
 
Frictional Value (LA, BPN, AIR, etc) = z + a log (1/R1) + b log (1/R2) + c log (1/R3) + d log 
(1/R4) …………(5) 
 
where each term represents the spectral measurement at a different wavelength multiplied by a 
corresponding coefficient. Each coefficient and the intercept (z) are determined by multivariate 
regression analysis. The PLS and PCR quantitative regressions algorithms that are formed by 
GRAMS IQ use information from all wavelengths in the entire NIR spectrum to predict the 
sample characteristics.   
 
5.4. Modeling Procedures 
 
Data analysis using GRAMS IQ involve the following procedures: (1) Data Preprocessing, (2) 
Outlier Detection, (3) Building a Good Calibration Model, (4) Validation, and (5) Prediction. 
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5.5. Modeling Results  
 
5.5.1. Qualitative analysis 
Qualitative analysis was carried out using samples from the same quarry locations. However, in 
order to develop excellent classification models, sufficient numbers of samples displaying 
maximum variability of the characteristic of interest must be available from each quarry location. 
Subsequently, it was not possible to develop classification models for some quarry locations as 
the samples available were not sufficient. For classification modeling the spectra are usually 
collected in reflectance. The GRAMS IQ requires a minimum of five spectra in order to develop 
a classification model. Subsequently, since three spectra scans were obtained from each 
aggregate sample obtained from a particular quarry location it is only possible to develop 
classification models for quarries that have samples from more than two locations within the 
quarry or samples collected in multiple years. 
 
In the GRAMS IQ software, classification models compare the spectrum of an unknown to a 
group of spectra of a known class. The results of this kind of model indicate whether the new 
sample resembles a particular type of sample. This classification model development that was 
carried out by the software is especially useful for the validation of source approval of HMA 
surface aggregates. GRAMS IQ uses Principal Component Analysis/Mahalanobis Distances for 
sample identification and screening. For the purpose of the qualitative analysis, spectral data 
from all the aggregate samples, expressed in the form of reflectance were collected with the 
FieldSpec 4 Spectrometer. Discriminant analysis using PCA with Mahalanobis distance based on 
full NIR spectra from the aggregate samples was used to construct calibration models for each 
quarry by the calculation of Mahalanobis distances from principal component scores. Two 
classification models developed for two limestone quarries (Quarry 18 and Quarry 17) shall be 
presented in this report.  
 
5.5.1.1. Quarry 18 Classification Model  
A total of 12 spectra was used for the creation of this classification model. One outlier with 
different spectral pattern was removed during the modeling process. Having set the Mahalanobis 
Distance at three standard deviations, spectra that exceed this threshold were automatically 
marked as outliers. The 12 spectra were from aggregate samples that were obtained from Quarry 
18, during different time periods (2009, 2010, 2011, and 2013). Appendix A shows the report of 
the classification model developed in GRAMS IQ. Three PCA factors were used to construct the 
classification model and the wavelength section was from 450 nm to 2450 nm. Factor Loadings 
plot was used to identify areas that contain noise (350 – 450 nm and 2450 – 2500 nm 
wavelengths) which would be detrimental to the model (see Figure 4). The removal of the “noise 
regions” helped improve the model; the spectra subsequently used were from 450 nm to 2450 nm 
(see Figure 5). 
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Figure 4. Factor Loading Plot Showing Scratchy/Rough Regions of 350-450 nm & 2450-2500 
nm Due to Noise. 

The model results indicated a high percentage of accuracy for the aggregates from Quarry 18. 
Correct classification refers to the percentage of spectra samples from other quarry locations 
outside Quarry 18 in a validation set, non-matched with spectra in a calibration set 
(Cheewapramong, 2007). This result suggested that the classification model was able to reveal 
any aggregates that were not derived from Quarry 18 (see Table A1 (Appendix A) –a sample 
section of the classification results obtained for Quarry 18).  
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Figure 5. Wavelength Region Selection (450-2450 nm). 

Table A2 (Appendix A) shows a portion of the result of the classification model and the MHD 
when matched with the samples from the same quarry that was used to develop the model as well 
as other samples derived from other quarry locations outside the model population. This 
demonstrates how the model will function when used to validate the source of aggregates. As 
stated earlier, a match result of “Possible” refers to a situation when the MHD is between one 
and three (ASD, 2012). 

5.5.1.2. Quarry 17 Classification Model  
A total of 12 spectra (17A – 17D, for 2009, 2010, 2011, and 2014) was used for the Quarry 17 
classification model, and wavelengths 400 nm to 2450 nm were selected for this analysis (see 
Figure 666). One outlier was removed during the modeling process. The results (Table A3-
Appendix A) showed a high percentage of  accuracy for model Quarry 17. Again, the model was 
able to detect/screen all the samples that were from Quarry 17. The  accuracy implies that this 
model can be used as a quality control tool to reveal any aggregates that are derived from Quarry 
17 with the use of the ASD spectroradiometer. 

Table A4 (Appendix A) shows the result of the classification model and the MD when matched 
with the samples from the same quarry that was used to develop the model as well as other 
samples derived from other quarry locations outside the model population. This reveals how the 
model will function when it is being used to validate the source of aggregates used in 
construction. As stated earlier a possible match result is when the MD is between one and three.  
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Figure 6. Quarry 17 Spectra Work Sheet. 

 
5.5.2. Identification and Analysis of Signature of Aggregate Spectra 
 
Absorption of energy in minerals results from the electronic and vibration processes of 
molecules. The electronic processes include crystal field effects, charge transfers conduction 
bands and color centers. The vibrational processing involving stretching, bending and rotation 
offers information about the functional groups present in the minerals. Subsequently, molecular 
vibration-related spectral absorption is characteristic of functional groups and is useful in 
identification of minerals. Laboratory spectroscopic analyses of the aggregates will be very 
useful in identifying the spectra active minerals that are present in the aggregates. Examples of 
molecules that produce vibrational absorptions within the NIR include water, hydroxyl, carbon 
dioxide, carbonates, sulfates and methane (Clark 1999). These varieties of absorption processes 
and their wavelength dependence allow us to derive information about the mineralogy and 
chemical composition of any aggregate sample from its reflected light. Sgavetti et al (2006), 
through their laboratory spectroscopic analyses, supported by specific petrographic analyses, 
showed the relationship between absorption-band frequency and spectrally active functional 
groups and the unexpected effects of bulk-rock composition on this relationship. The purpose of 
their study was to contribute to the general understanding of bulk-rock spectral properties for 
compositional analysis, classification, and mapping of data acquired in different experimental 
conditions. Their research focused on the analysis of rock spectral variability, which is a 
component of the micro-complexity, in order to establish relationships between mineral 
chemistry and absorption bands. They discovered that rock petrology and geochemistry resulting 
from different geologic processes affect the rock spectral signature. They also observed that 
genetically related rocks can display systematic variations of spectral parameters as functions of 
systematic variations of petrographical and geochemical parameters. Spectral variability was also 
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observed for diagnostic absorptions due to electronic processes in iron-bearing minerals 
occurring in mafic rocks.  
 
 
Sgavetti et al (2006) further followed a number of steps in their analysis. First, sets of absorption 
features occurring within the rock spectrum and attributable to absorption processes in individual 
minerals were isolated to form absorption patterns. Absorption patterns were thus related to 
mineral chemistry. They noted that the most prominent spectral patterns often represent the most 
abundant mineral in the rock. Occasionally, dominant patterns were due to modally subordinate 
phases, which normally provide a description of the rock mineralogy, useful for the identification 
of rock types and geologic contexts. 
 
Sgavetti et al 2006 further used laboratory spectra measured on rock slabs for the spectral 
classification of a suite of rocks belonging to pre-Paleozoic metamorphic sequences of the 
central Madagascar basement. Their first-order classification was based on dominant spectral 
patterns corresponding to the most abundant minerals or to the spectrally dominant species, and 
was represented by impure carbonate rocks, muscovite-bearing quartzites and micaschists, 
ferromagnesian rocks, and felsic rocks with abundant altered feldspar. Their second-order classes 
were based on subordinate spectral patterns, which described the spectral variability due to 
spectrally less active or less abundant phrases. 
 
In identifying the spectra and analyzing the spectra pattern of the aggregates obtained from the 
various quarries, spectra pattern derived by Sgavetti et al 2006 as well as information of mineral 
spectra library from the US Geological Survey (USGS) database were used. The spectra pattern 
of aggregate samples derived from two typical quarries (Quarries 3 and 6) and spectral 
identification of common rocks that were encountered during the spectrographic analysis are 
presented in the main body of the report, while the spectral identification of the rest of aggregate 
samples derived from the remaining quarries are in Appendix C. The spectra library of each 
mineral that is present in all the aggregates from the quarries that were used for the analysis of 
the spectra pattern of the aggregates as obtained from USGS database is shown in Appendix D.  
In analyzing the spectra pattern of each of the aggregate samples, the same procedure used by 
Sgavatti et al (2006) was adopted. Although there may be some slight differences in the spectra 
pattern in the metamorphic rocks as observed by Sgavatti et al (2006), the slight discrepancies 
were corrected by the information obtained from the USGS database.  Table 4 shows the spectra 
pattern occurring within the rock spectrum that is attributable to absorption processes in 
individual minerals present in the aggregates samples on which laboratory spectroscopic 
analyses were conducted. The spectral pattern in Table 4 was obtained from the information 
obtained from the USGS database as well as from the study from Sgavatti et al (2006). 
Spectroscopic analyses cannot identify spectral inactive minerals like quartz in the NIR region. 
The spectra pattern symbol as contained in Table 4 has been used to identify the diagnostic peaks 
and troughs on the spectra of the aggregates samples presented. 
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Table 4. Spectra Pattern Attributable to Absorption Processes in Individual Minerals Present in 
the Aggregates Samples Analyzed. 

 
 
 
5.5.2.1. Spectra Identification and Patterns Analysis of Aggregate Samples from Quarry 3  
Aggregates samples produced from Metagabbro Quartz-Diorite at Quarry 3 in 2012 and 2014 
were obtained for the study. The mineralogical compositions of the aggregates are shown in 
Table 5.  
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Table 5. Rock type and mineralogical composition of aggregates produced from Metagabbro 
Quartz-Diorite in 2012 and Metamorphic and Intrusive Igneous Rocks in 2013 at Quarry 3. 

Mineral  Mineral Spectra Library 
Reference (In Spectra Library 
Document-Appendix D) 

Percentage Composition 

 
 

2012 2013 

Quartz  75-87 40 
Ferromagnesian 
Mineral       

Appendix D5 5-10 10 

Micaceous Mineral Appendix D6 5-10 40 
Feldspar Appendix D16 3-5 10 
Clinozoisite Appendix D3 - 0-5 
Index Properties    
Specific Gravity  2.838 2.799 
LA (%)  14 15 
Friction Category  HDFV-III HDFV-III 
 
 
Figure 7 shows the spectra of aggregates samples collected in 2012 and 2013 from Quarry 3. The 
spectra of the aggregates samples shown are in reflectance and corresponding absorptions 
wavelength positions are given in nanometer on each spectra. The spectrum of the aggregate 
collected in 2012 is on top of the stack and it reveals a distinctive absorption wavelength of 
about 615 nm for the Ferric ions (Fe2+& Fe3+) which is an indication of the Ferromagnesian 
Mineral (Pyroxene) present in the aggregate. Quartz, which is not spectrally active, constitutes a 
greater percentage of the minerals present. At around 2400 nm wavelength very weak and faint 
hydroxyl (OH) combinations in Mica and Feldspar are manifested, which are the reflection of the 
low composition of Mica (5-10%) and Feldspar (3-5%) present in the aggregate. However, the 
spectra pattern of the aggregate sample collected in 2013 from the same quarry is significantly 
different.  The major minerals present in the aggregates are spectrally active: Micaceous 
Minerals (40%), Feldspar (10%), and Ferromagnesian Mineral (10%). These combinations of the 
spectrally active minerals are manifested in the distinctive absorption bands associated with these 
minerals. Fe2+ Crystal Field (CF) Electronic transitions in Ca-rich Pyroxene (Ferromagnesian 
Mineral) are manifested near 944 nm and 1180 nm respectively. The H2O vibrational modes 
near 1400 nm and 1900 nm respectively suggest the presence of feldspar in the aggregate. The 
distinctive AL-OH vibrational modes near 2250 nm reveal the incipient alteration of the feldspar. 
The strong absorption band of Mg-OH vibrational mode near 2354 nm, which are usually present 
in trioctahedral Mica, suggests the presence of a larger amount of micaceous minerals in the 
aggregate (40%). Based on the significant differences in the spectra of these two aggregates 
obtained from the same quarry during different years, there are bound to be differences in their 
frictional and physical properties (evidenced by the difference in the index properties provided).  
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Figure 7. Spectra of aggregates samples collected in 2012 and 2013 from Quarry 3. 

 

5.5.2.2. Spectra Identification and Patterns Analysis of Aggregate Samples from Quarry 6  
From Quarry 6 aggregates samples were collected in 2011 and 2014 respectively. The 
mineralogical compositions of aggregates are shown in Table 6. 
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Table 6. Rock type and mineralogical composition of aggregates produced from Gabbro at 
Quarry 6. 

Mineral  Mineral Spectra Library 
Reference (In Spectra Library 
Document: Appendix D) 

Percentage Composition 

 
 

2011 2014 

Plagioclase Appendix D2 30-45 30-45 
Clinopyroxene Appendix D13 20-45 20-45 
Quartz  5 5 
K-Feldspar Appendix D7/D8 5 5 
Actinolite Appendix D1 0-20 0-20 
Biotite Appendix D14 1-5 1-5 
Opaques  1-5 1-5 
Index Properties    
Specific Gravity  2.950 2.946 
LA (%)  14 14 
Friction Category  HDFV-III HDFV-III 

  
 
The spectra of the aggregates samples shown in Figure 8 are also in reflectance and 
corresponding absorptions wavelength positions are given in nanometer on each spectra. The 
spectrum of the aggregate collected in 2011 is on top of the stack and it reveals distinctive 
absorption bands from about 500 nm to 1000 nm for the Ferrous and Ferric Irons (Fe2+& Fe3+) in 
Clinopyroxene{(Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6}, Actinolite {(Ca2(Mg,Fe+2)5Si8O22(OH)2)} 
and Opaques (Iron Oxides and Sulphides) respectively. These absorption bands indicate the 
presence of ferric and ferrous irons in the crystal structures of these minerals. The bands near 
1400 nm and 1900 nm are due to water (H20 modes) present in the microscopic fluid inclusions 
within the mineral grains of the Plagioclase (Sodium Aluminum Silicate) and K-feldspar 
(Potassium Aluminum Silicate) (Hunt and Salisbury, 1970). The prominence in the absorption 
bands of the H20 mode suggests the abundance of the plagioclase in the aggregate. The weak 
absorption bands of AL-OH and Mg-OH vibrational modes between 2200 nm and 2400 nm 
reveal the incipient of slight alteration in the Plagioclase (Sodium Aluminum Silicate), K-
feldspar (Potasium Aluminum Silicate) and Biotite {(K(MgFe)3AlSi3O10(OH)2)}. There is no 
significant difference between the spectra of the aggregate sample collected in 2014 from the 
same quarry. Subsequently the petrographic information is the same as well as the frictional and 
physical properties of the aggregates. 
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Figure 8.  Spectra of aggregates samples collected in 2011 
and 2014 from Quarry 6. 

 

5.5.2.3 Spectra Identification of Common Rocks Encountered (Limestone-Dolomite and 
Limestone) 
From all the quarries, multiple spectra for a particular rock are put together, in order to aid 
aggregate source validation. From all the quarries the following rock types are derived from 
more than one quarry: Limestone-Dolomite (Quarry 19 & 20), Limestone (Quarry 7, 9, 17, 18, 
21, 22, 23, & 24)
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5.5.2.3.1 Spectra Identification and Patterns Analysis of Aggregates Produced from Limestone 
Dolomite (Quarry 19 & 20) 
The samples were collected in 2009, 2010, and 2012 from Quarry 19 and in 2009 and 2010 from 
Quarry 20 respectively and the rock type is Limestone-Dolomite which comprises mostly of 
calcite (CaCO3) and Dolomite (CaMg(CO3)2). The spectra of the five samples are shown in 
Figure 9. Weak Ferric and ferrous absorption bands around the visible range at 1000 nm reveals 
the presence of ferrous ions substituting in small amount of calcium. The spectra clearly displays 
strong carbonate band (CO3 

2-) normally present in combination of Calcite (CaCO3) and  
Dolomite (CaMg(CO3)2 at 2329 nm. In addition there are weak bands of carbonate at 1804 nm 
and 2147 nm respectively, which are typical of calcite minerals. The prominence of the 
absorption bands of the Calcite mode suggests the abundance of the calcite-dolomite in the 
aggregate. There are no significant differences in all the spectra.  
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a: Quarry 19 
 
 
 
 



 

31 
 

 
 

b: Quarry 20 
 

Figure 9: Spectra of Aggregates Produced from Limestone 
Dolomite (Quarry 19 & 20). 
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5.5.2.3.2 Spectra Identification and Patterns Analysis of Aggregates Produced from Limestone 
(Quarry 7, 9, 17, 18, 21, 22, 23 & 24) 
Figures 10-13 show four distinctive spectra of aggregates produced from Limestone sampled 
during different years from eight quarries (Quarries 7, 9, 17, 18, 21, 22, 23 and 24) as follows: 
(1)  Figure 10; Quarries 7 and 8, (2) Figure 11; Quarries 17, 18 and 23, (3) Figure 12; Quarries 
21 and 22 and (4) Figure 13; Quarry 24. The year of collection and quarry location are shown in 
the figures. Weak Ferric and ferrous absorptions bands at around the visible range from about 
400 nm to 1000 nm reveal the presence of ferrous impurities in the limestone. The spectra clearly 
display strong carbonate bands (CO3

2-) normally present in Calcite (CaCO3) at 1800 nm, 2200 
nm and 2340 nm, respectively. The prominence of the absorption bands of the Calcite mode 
suggests the abundance of the calcite in the aggregates. The spectra also show another weak 
Carbonate band at 1847 nm.  
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a: Quarry 7 
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b: Quarry 9 
 

Figure 10: Spectra of Aggregates Produced from Limestone 
(Quarries 7 and 9) 
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 a: 
Quarry 17 
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a: 
Quarry 18 

 

 
c: Quarry 23 

 
 

Figure 11: Spectra of Aggregates from Limestone (Quarries 17, 18 and 23) 
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a: Quarry 21 

b: Quarry 22 
 

Figure 12: Spectra of Aggregates from Limestone (Quarries 21 and 22) 
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Figure 13: Spectra of Aggregates from Limestone (Quarries 24) 
 

 
5.5.3. Blind Sample Spectra Analysis 
 
The ASD FieldSpec 4 spectroradiometer along with the turntable were used to obtain three 
spectra per sample of the five blind samples supplied. Three spectra of each sample were then 
averaged to obtain a single spectrum per blind sample provided. Each spectrum of the blind 
sample was then visually matched with the spectra library of all the quarries. All the spectra are 
in reflectance and the absorptions bands were recognized at specific frequencies; since the 
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spectra are in reflectance, the absorptions band is recognized by a sharp depression at specific 
frequency. In identifying the spectra and matching the spectra pattern of the blind sample 
aggregates with spectral signature from the various quarries, spectra pattern derived by Sgavetti 
et al 2006 as well as information from the mineral spectra library of the US Geological Survey 
(USGS) database were used. Detailed analysis of the spectra matching of the blind aggregates 
samples with all the spectra library of all the quarries provided are shown in Appendix B while 
Table 7 shows a summary of the matched samples. In conducting the analysis, the most likely 
matched aggregate samples have been indicated in Table 7 as the analysis was manually 
conducted. However, in order to obtain the best and accurate matching it is recommended to 
utilize the Spectra Geologist (TSG) a Pro-mineral analysis software that easily sorts and analyzes 
mineral data. The TSG software, which has the ability to turn thousands of spectra into 
mineralogical indices for plotting mineral characteristics (such as composition), can also be used 
to determine the mineralogical composition (qualitative and quantitative) of the aggregates blind 
samples. Unfortunately Morgan State University has not yet acquired this software. 
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Table 7. Summary of Blind Samples Matching. 

 
Blind 
Sample 
Quarry  

Matching 
Quarry/Rock Type 
(Most Likely) 

Quarry/Rock Type (Likely) 
 

 
 

1 2 3 

 A Quarry 3 (2014) 
Metagabbro Quartz-
Diorite 

Quarry1 2014 
Amphibolite 
Schist   

Quarry 15 
2014-1 
Gneiss 

Quarry 3 
(2013) 
Metamorphic 
and Intrusive 
Igneous 
Rocks 

G Quarry 3 (2012) 
Metagabbro Quartz-
Diorite 

Quarry 4 
2013 
Mafic 
Extrusive 
Rock (Basalt)  

  

H Quarry 15 2014 (II) 
Hornblende Trap 
Rock    

Quarry 3 
(2014) 
Metagabbro 
Quartz-
Diorite 

Quarry 1 
2014 
Amphibolite 
Schist 

Quarry 3 
2013 
Metamorphic 
and Igneous 
Rocks 

K Quarry 13 2013 
Quartz Plagioclase 
Gneiss-Granite 
Gneiss 

Quarry 16 
2014 Quartz 
Plagioclase 
Gneiss-
Granite 
Gneiss   

Quarry 1:  
2014 
Amphibolite 
Schist 

Quarry 15 
2014 (I) 
Gneiss   

S Quarry 4 2013 
Basalt 

   

 
 
5.6. Chemometrics Results and Conclusions   
Discriminant analysis, based on Mahalanobis Distances calculated from reflectance data at full 
wavelengths (400-2450 nm) was also able to discriminate limestone found in a particular quarry 
from other aggregates derived from other quarry locations. When applied to a data set, it appears 
that the two classification models correctly identified samples  not related to the original data 
population.  However, it was not possible to perform the discriminate analysis in order to 
determine the origin of the blind samples given because there was not sufficient variability in 
aggregate samples from the non-carbonate quarries. Most non-carbonate quarries have samples 
collected from one or two locations from each quarry; however, in order to incorporate 
variability and generate a good classification model at least samples must be collected from 
about five different locations with varying geomorphology within a quarry.   Additionally, the 
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quantitative analysis of the physical properties of the aggregates that was carried out with the 
Chemometric software was suspended because there were not sufficient samples from different 
locations within the quarries that could have generated accurate quantitative models.    
 
The results obtained so far from the spectra identification and pattern analysis showed promise 
for the utilization of NIR spectroscopy for detecting and explaining the variability in the 
frictional and physical properties of aggregates within a quarry over a period of time. 
Subsequently, the spectra obtained for the various aggregates can be used as diagnostic tools to 
validate an aggregate source.  
 
The GRAMS IQ software has the capability of combining and incorporating both the qualitative 
and quantitative models in an automated system that screens/classifies the aggregates and 
predicts the frictional parameters that are required for QA and QC of HMA surface mix 
aggregates in real time.    
 
From the results of the spectra analysis and absorption variability, it can be concluded that the 
spectra pattern can be used to explain the variation in the frictional and physical properties of 
aggregates within a quarry from one location to the other. In addition, the basis for the 
identification of the diagnostic features of the minerals and ions has been given in Table 4 as 
well as from information from the spectral library of the associated minerals in the USGS 
database (Appendix D). The absorption pattern of the signature of the aggregates is related to the 
chemical composition of the aggregates; however, it was not possible to identify the presence of 
quartz as the mineral is not spectrally active in the NIR region. In identifying the source of the 
aggregate blind samples the most likely matched aggregates were visually obtained by 
inspection; however in order to obtain the best and accurate matching it is recommended to 
utilize the Spectra Geologist (TSG) a Pro-mineral analysis software that easily sorts and analyzes 
mineral data. The TSG software can also be used to determine the mineralogical composition of 
any blind aggregate sample as well as to analyze and visualize the mineralogy of large data sets.  
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6.0. NEURAL NETWORK METHOD 
 
6.1. NN Overview 
The Neural Network (NN) Method is based on a statistical mapping between a set of inputs and a 
set of outputs. In the current implementation, the 2500 spectral components of each aggregate 
sample were parametrically reduced into a 25th–order model, which has been shown to provide 
good performance on the current aggregate quarry set. This is illustrated in Figure. 14.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. XXXXX Aggregate 3A1, original spectrum and the 25th –order model spectrum 

 
The 25 model coefficients then form the input data to the neural network. The order of the model 
can be increased, or decreased, as appropriate. The output parameters are the Specific Gravity 
(SG), LA coefficient (LA), and the Friction Category (FC). The number/type of output 
parameters can be changed but this must be done prior to network training.  
In this methodology, processing is done in two(2) phases. Phase I is a training phase, where the 
processing engine is trained to estimate Specific Gravity, LA, and Friction Category by  
 
Figure 14. Aggregate 3A1, Original Spectrum & the 25th –Order Model Spectrum. 
  
 

Figure 14. Aggregate 3A1, Original Spectrum & the 25th –Order Model Spectrum. 
  
The 25 model coefficients then form the input data to the neural network. The order of the model 
can be increased, or decreased, as appropriate. The output parameters are the Specific Gravity 
(SG), LA coefficient (LA), and the Friction Category (FC). The number/type of output 
parameters can be changed but this must be done prior to network training.  
 
6.2. NN Analysis 
In this methodology, processing was done in two (2) phases. Phase I was a training phase, where 
the Processing Engine was trained to estimate SG, LA, and FC by recursively trying to achieve a 
best fit between the true values and the NN’s estimated outputs. The NN’s internal processing 
weights were adjusted on each iteration until either a certain number of training iterations was 
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reached, or, there was some minimum difference between the true aggregate parameter values 
and the estimated values. Phase II was the classification phase, in which the 25 model parameters 
estimated from the spectrophotometer spectrum of an (unknown) aggregate sample were input to 
the trained Processing Engine, i.e., the trained neural network, and the network estimated the SG, 
LA, and FC. A Block diagram of the ‘Phase I – Training Phase’ is illustrated graphically below 
in Figure 15, and for ‘Phase II – Estimation Phase’ in Figure 16. 
 

Phase I – Training Phase 

 
 
 

Figure 15. NN Method Training Phase. 
 

Phase II – Estimation Phase 
 

 
 

Figure 16. NN Method Estimation Phase. 
 
The basic algorithm flow is as follows: 
 
A) Phase I – Training Phase 
 
1 – An Excel spreadsheet was generated which consisted of 25-coefficient vectors, one for each 
measured aggregate sample (Figure 17). This was the NN method training input data.  
 
2 – A matching target vector was generated. The current implementation utilized two target 
vectors: one for the Friction Category, and a second for the SG, LA Coefficient (Figure 15). 
 
B) Phase II – Estimation Phase 
1 – An aggregate sample spectrum was recorded with the FS4 Spectroradiometer, 
 
2 – 25 spectrum estimation coefficients were extracted (this was done automatically in the 
Processing Engine), 
 
3 – The coefficients were then sent to the Processing Engine for parameter estimation, and 
 
4 – The estimated values of SG, LA coefficient, and FC were then obtained. 



 

44 
 

 
 

Figure 17. Illustration of the NN Matrix of Input Data Vectors. 
 
 

 
 

Figure 18. Illustration of the Partial Contents of the Estimator NN Target Data File. 
 
 
6.3. NN Results and Conclusions 
 
Table 8 Iilustrates the results obtained by the ‘Aggregate Characteristics Estimator’ after the 
network was trained for aggregate samples across the six friction categories. As noted there were 
no samples for friction category 4. Table 9 illustrates the results obtained for the GIS Lab’s 
‘unknown’ aggregate No. 26.  
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Table 8. Test Results for the Full FC/SG/LA Estimator. 

 
Aggregate 
Test File 

True 
Friction 
Category 

Estimated 
Friction 
Category 

True 
Specific 
Gravity 

Estimated 
Specific 
Gravity 

True LA 
Coefficient 

Estimated 
LA 
Coefficient 

5A1 1 1 2.778 2.772 28 27.655 
7A1 2 2 2.693 2. 6894 16 16.07 
14A2 3 3 3.013 3.011 18 18.06 
N.A. 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
17A1 5 5 2.72 2.7145 22 22.048 
23A1 6 6 2.730 2.7332 23 22.9393 
 
 

Table 9. Parameter Estimates obtained for ‘Unknown’ Aggregate 26. 
 

Aggregate 
Test File 

True 
Friction 
Category 

Estimated 
Friction 
Category 

True 
Specific 
Gravity 

Estimated 
Specific 
Gravity 

True LA 
Coefficient 

Estimated 
LA 
Coefficient 

26 ‘unknown’ 5 ‘unknown’ 2.577 ‘unknown’ 20.6125 
 
 
6.4. SHA Aggregate Blind Test Results using NN 
 
The Maryland SHA delivered aggregate samples from five quarries to Morgan State. The 
aggregate spectra were extracted using the FS4. Ten spectra were collected and then averaged, 
and 3 averaged spectra samples per quarry were then used for this analysis (see FS4 setup in 
Figure 2). The aggregate samples for the Blind Test data files were denoted as QA, QG, QH, 
QK, and QS (Q is for quarry, and A, G, H, K, and S are identification letters). 
 
The NN method depends on a classification network which has been trained on the class of data 
for which it will eventually be able to blindly classify. The robustness of the network depends on 
several factors – the quantity of data, which should span the extremes of each class of data, the 
variance of the data within a particular class and the separation between the classes, i.e. 
preferably orthogonal, with no overlap. 
 
First Trial 
The following results were obtained by processing the first column of spectra data in each of the 
five Quarry data files. Additionally, a 4th column of spectrum data was synthesized as the 
average spectrum of the particular quarry by averaging the measurement data from the first three 
spectra for that quarry. I.e., ‘Qx_Col1.txt’ are the estimation results obtained using the first 
column/spectra data and ‘Qx_Avg.txt’ are the estimation results using the averaged *input* 
spectra (NOT the average of the three estimation output results). 
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Table 10. Parameter Estimation Results Using the Original Raw Spectra Measurements. 
Estimates obtained using ‘Col1’ and ‘Ave’ data only). 

 
Aggregate File Estimated Friction 

Class 
Estimated Specific 

Gravity 
Estimated LA 

Coeff. 
QA_Col1.txt 5 2.8211 17.7471 
QA_Avg.txt 3 2.7260 18.6891 
QG_Rb_Col1.txt 6 2.4431 36.9904 
QG_Rb_Avg.txt 6 2.3566 31.1416 
QH_Col1.txt 5 2.5446 15.3972 
QH_Avg.txt 3 2.8718 10.9863 
QK_Col1.txt 5 2.9454 20.6246 
QK_Avg.txt 5 3.0059 17.0632 
QS_Col1.txt 3 2.8919 16.5478 
QS_Avg.txt 5 3.1472 9.9801 
 
Though this is a blind test, from prior performance of the estimator it was evident that some 
factor is causing a significant amount of variance in the estimates, i.e., the estimation of two 
different friction classifications (samples QA, QH, and QS) using the raw 1st column input 
spectra measurement, and the input data averaged over the three columns of input measurement 
data. 
 
Trial 2 
In trial two, the remaining two sample measurements, i.e., measurements ‘2’ and ‘3,’ from each 
quarry were used to provide additional parameter estimates for that particular quarry. This was 
done for all five quarries. The following table illustrates the original results obtained using 
measurements ‘1’ (i.e., ‘Col1’ data) and ‘Ave,’ along with the estimation results utilizing 
measurements ‘2’ and ‘3’ for each quarry.  
 
Trial 3 
In trial three, the first 50 wavelength samples, which were extremely noisy and showed very 
little correlation across the three measurements-per-sample, were excised from each 
measurement file. This is the variance that can be seen across the estimates in Trial 1, as the 
model tried to estimate not only valid data, but also noise. As in Trial 2, parameter estimations 
are performed for each of the three samples-per-quarry. As in prior cases an additional estimate 
is made utilizing an average spectrum input vector. The results are shown in the following table.  
 
Trial 4 
Similarly to Trial 3, the first few noisy samples were excised. Additionally, the last few noisy 
samples were also excised. The original data spanned 350 <= λ <= 2500. In Trial 4, the excised 
data spanned 400 <= λ <= 2450. 
 
Trials ‘3’ and ‘4’ were performed in an attempt to reduce the overall variance of the Specific 
Gravity, LA Coefficient, and Friction Category estimates, for the same sample. 
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Compiled SHA Aggregate Blind Test Results 
The compiled results of the SHA Blind Tests Results are given in Table 11 below. 
 

Table 11. Compilation of Results of SHA Blind Tests. 
 

Quarry Trial Est. 
Friction 
Category 

Est. SG 
(Averaged Input Data) 

Est. LA 
(Averaged Input Data) 

QA     
 1 3 2.7260 18.6891 
 3 3 2.7365 17.6651 
 4 3 2.7500 16.6859 

QG     
 1 6 2.3566 31.1416 
 3 3 2.7757 16.8932 
 4 3 2.7725 16.4668 

QH     
 1 3 2.8718 10.9863 
 3 3 2.7616 17.6708 
 4 3 2.7429 19.2998 

QK     
 1 5 3.0059 17.0632 
 3 3 2.8098 16.1631 
 4 3 2.7587 16.9591 

QS     
 1 5 3.1472 9.9801 
 3 3 2.7119 20.0373 
 4 3 2.7571 16.5651 

 
Note: ‘Trial 2’ is not included as the Trial 1 and Trial 2 results for the ‘Average Input Spectrum’ 
are identical. Trial 2 just added the results for aggregate samples 2 and 3. I.e., those results are 
illustrated in Table 10. 
 
‘Sanity Check’ 
Due to what seemed as fairly high variance on the estimation results for same-quarry aggregates 
a sanity check on the Neural Network Method was performed using three different samples from 
Quarry 18. The results are illustrated in Table 12. 
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Table 12. Parameter Estimation Results, Original Quarry 18A Data. 

 
Aggregate 

File 
True 

Friction 
Category 

Estimated 
Friction 
Category 

True 
Specific 
Gravity 

Estimated 
Specific 
Gravity 

True LA 
Coefficien

t 

Estimated 
LA 

Coefficien
t 

c:\18A1.txt 5 5 2.65 2.6495 21 21.0046 
c:\18A2.txt 5 5 2.65 2.6408 21 20.6631 
c:\18A3.txt 5 5 2.65 2.6531 21 21.0912 
 
7.0. SPECTRAL LIBRARY DEVELOPMENT 
 
The MSU GIS Laboratory received 42 aggregate samples from 19 different quarries. The 
information provided with each aggregate consisted of the aggregate producer, quarry name, 
friction category, year sampled, rock type, specific gravity, LA coefficient, micro deval, SS, 
BPN, avg. AIR, and mineral/% Composition. While not all parameters were available for every 
aggregate sample, specific gravity and LA coefficients were available for most. This information 
formed the basis for constructing the spectral library.  
 

 
 

Figure 19. Main Page of MSU-GIS Laboratory Digital Spectral Library website. 
 
Figure 19 illustrates the opening page of the MSU-GIS Laboratory Digital Spectral Library 
website. The current logo is a temporary place holder. There are four main columns with the left-
most column containing the name of the aggregate producer, quarry, and date on which the 
aggregate was sampled. The right-most three columns are hot-linked to the appropriate location 
to obtain either the desired aggregate description, data, or plot. For each additional entry to the 
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Library, on a new row the aggregate producer, quarry, and sample date information is entered 
into the left-most column. Then, a description file, ASCII data file, and spectral plot file are 
created and added to their appropriate directories. The names of the associated description, 
ASCII data, and spectral plot files are entered into columns 2, 3, and 4, respectively. These 
filenames are then hot-linked to the respective file location. 
 

 
 

Figure 20. Underlying Data Structure of the Spectral Library. 
 
Figure 20 illustrates the primary underlying data structure. File folder ‘Aggregate Descriptions’ 
contains the .txt files describing various attributes of the associated aggregate. There is an 
‘Aggregate Description Template’ which can be used when adding new aggregates. Folder 
‘Aggregate ASCII Data’ contains .txt files whose content is two columns of data. The left 
column is wavelength which spans 350 – 2500 nm. The right column contains the values of 
average reflectance for the associated wavelength. The single column of average reflectance data 
is derived by averaging the three epochs of reflectance data contained in the original data file 
associated with the particular aggregate sample. The ‘Aggregate Spectrums’ folder contains the 
spectrum derived from the aggregate average reflectance data contained in the ‘Aggregate ASCII 
Data’ file. Any time a new aggregate is measured, a new text description file, text ASCII data 
file, and JPEG spectrum file should be generated and saved to the appropriate folder. The final 
folder ‘Templates’ contains the main website file. Any time a new aggregate is measured a new 
row should be added to the Library homepage, as described previously. The main website file is 
developed in Adobe Dreamweaver CS5.5.  
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Figure 21. Structure of the ‘Aggregate ASCII Data’ file folder. 

 
Figure 21 illustrates the file structure of the ‘Aggregate ASCII Data’ file folder. The files are .txt 
format and named to illustrate that they contain data which is the average reflectance of the three 
columns of data contained in the original aggregate data files (Note that the file named 
‘17A_Avg_17B_Avg_17C_AVG&17D_A..’ was just a test file, and is not used in the actual 
library). 
 

 
Figure 22. Segment of an Excel file used to generate the average spectrum. 
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Figure 22, above, illustrates how the data from aggregate sample 03A measurement epochs 1, 2, 
and 3 (in columns ‘D’, ‘E’, and ‘F,’ respectively) are used to form the average spectral response 
which is given in column ‘B.’ I.e., the contents of cell B1 are calculated as,  
 
B1 = 1/3 * (D1 + E1 + F1) …………….  (6) 
 
The remaining cells, i.e., B2, B3, …., B2151 are calculated in a like manner. 
 

 
 

Figure 23. Illustration of the Contents of the ‘Aggregate Descriptions’ file folder. 
 
The contents of the folder are .txt files and an example of the contents of a description file is 
shown in Figure 23: 
 
DATE: 09/04/15 
 
SAMPLE NAME/CODE: 03A 
AGGREGATE PRODUCER: Company 03A 
QUARRY NAME: ‘ABC 
FRICTION CATEGORY: HDFV-III 
SAMPLE COLLECTION DATE: 2014 
ROCK TYPE: Metagabbro Quartz - Diorite 
SPECIFIC GRAVITY: 2.212 
LA: 12 
MINERALOGICAL COMPOSITION: Quartz (75-87%) Micaceous Min (10-20%)/Feldspar (3-
15%) 
CURRENT SAMPLE LOCATION: GIS Laboratory, Morgan State University, RM: CBEIS 
ULTIMATE SAMPLE LOCATION: Maryland State Highway Administration 
SAMPLE DESCRIPTION: 
IMAGE OF SAMPLE: 
 



 

52 
 

An example of the ‘Sample Description’ file (Template developed after that used by the USGS). 
The ‘Aggregate Spectrums’ file folder content format is shown below. Spectrums are currently 
saved as JPEG images generated either by ENVI, or a combination of Microsoft EXCEL and 
Microsoft Notepad. All the example spectrums listed in Figure 24 were generated and formatted 
in the Microsoft environment. 
 

 
 

Figure 24. Illustration of the ‘Aggregate Spectrums’ file naming conventions. 
 
A sample of the contents of a spectrum file, i.e., ‘03A_AVG_Spectrum,’ is illustrated below in 
Figure 25. 
 

 
 

Figure 25. Aggregate Sample 03A_AVG_Spectrum. 
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Figure 26. Contents of the ‘Templates’ File Folder. 
 
Figure 26 illustrates the contents of the ‘Templates’ folder which contains the GIS main website 
page ‘GIS_MainPage,’ and a ‘placeholder’ site logo. 
 
The site will currently run in ‘Local’ mode by opening a browser, then ‘File’ - - - > ‘Open File’ 
and navigating to, and double-clicking on ‘GIS_Main Page.’ Note, however, that as currently 
implemented the directory structure illustrated in Figure 15 must be maintained; i.e., the best 
way to effect this is to copy and paste the top folder – in this example, ‘Amalfi_Wilson_Spectral 
Library,’ which contains all of the other folders. Other than adding more aggregate data, and 
maintaining the database, the remaining task is to obtain hosting on, i.e., Morgan State 
University’s server. 
 
 
8.0. RESEARCH FINDINGS/DISCUSSION 
 
8.1. Chemometrics 
Discriminant analysis, based on MHD calculated from reflectance data at full wavelengths (400-
2450 nm) was also able to discriminate limestone found in a particular quarry location from 
other aggregates derived from other quarry locations. When applied to a data set, it appears that 
the two classification models correctly identified the samples not related to the original data 
population.  
 
The results obtained so far from the spectra identification and pattern analysis showed promise 
for the utilization of NIR spectroscopy for detecting and explaining the variability in the 
frictional and physical properties of aggregates within a quarry over a period of time. 
Subsequently, the spectra obtained for the various aggregates can be used as diagnostic tools to 
validate an aggregate source.  
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The GRAMS IQ software has the capability of combining and incorporating both the qualitative 
and quantitative models in an automated system that screens/classifies the aggregates and 
predicts the frictional parameters that are required for QA and QC of HMA surface mix 
aggregates in real time.    
 
From the results of the spectra analysis and absorption variability, it can be concluded that the 
spectra pattern can be used to explain the variation in the frictional, mineralogical and physical 
properties of aggregates within a quarry from one location to the other. In addition, the basis for 
the identification of the diagnostic features of the minerals and ions has been given in Table 4 as 
well as information from the spectral library of the associated minerals in the USGS database. 
The absorption pattern of the signature of the aggregates is related to the chemical composition 
of the aggregates; however, it was not possible to identify the presence of quartz as the mineral is 
not spectrally active in the NIR region. 
 
8.2. Neural Network 
While the number of aggregate sample spectra was not extensive it can be seen from the results 
that given only one spectrum measurement the NN can provide outstanding parameter estimation 
– given that the sample spectrum comes from a population over which the NN was trained. Thus 
the NN is a viable solution for the desired objective of quick parameter estimation based solely 
on optical spectrographic measurement.  
 
Some of the factors affecting results are due to time and the relatively small numbers of sample 
spectra per friction category. The NN is a statistical estimator and relies heavily on the variance 
of the training set, in order to sufficiently estimate data not originally included in the training set. 
It can be seen from Table 3 that the quantity of training data utilized in Friction Categories ‘1,’ 
‘2,’ and ‘6’ may not have allowed sufficient classification abilities in these three classes. While 
there was a bit more data for FC categories 3, and 5, the results for samples in those categories 
would depend on whether the variance of the training data spanned the expected/class values of 
specific gravities, LA coefficients, and FCs. 
 

• Preliminary results indicate that spectrometric methods could be used to significantly 
reduce the amount of time spent by the SHA to analyze aggregate samples and extract 
friction parameters. 

• In this particular algorithm, Processing Engine training is the biggest time factor, but 
training is done off-line. 

• After the aggregate spectrum is measured, the remaining steps to parameter estimation 
can be accomplished on the order of 15 minutes. 

 
 
9.0. CONCLUSIONS  
 
In conclusion, both the Chemometrics and Neural Network (NN) methodologies showed very 
promising results. The Chemometrics did differentiate limestone from different quarry locations, 
and was able to validate a higher percentage of aggregates samples as not from the sample 
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population. It was also able to determine the active mineralogical composition of some of the 
aggregate samples, based on the distinctive absorption bands associated with these minerals. In 
some cases, the analysis was able to differentiate aggregates from the same quarry which 
suggested the ability of the Chemometrics methodology to function properly when used to 
validate the source of aggregates used in construction. 
 
The NN methodology was extremely quick in estimating aggregate parameters; in some cases, it 
took just a few minutes including accurate parameter estimates of SG, LA coefficient, and 
Friction Category. The challenge however, of the NN methodology is that like most statistically 
based estimators it requires a large dataset, which span the extremes of all the particular classes. 
This provides sufficient variance within classes, thereby allowing the estimator to accurately 
predict parameters for spectra which were not included in the training set. It should be noted that 
the NN training only needs to be done once, unless additional classes/statistics need to be added. 
In the future, the effects of the model-order parameter, which is used to reduce the number of 
spectral coefficients used for estimating the aggregate parameters, could be investigated. 
 
The Spectral Library is a very beneficial tool that can be easily updated. The architecture consists 
of four primary entities: 1 – The library ‘Main’ HTML page, 2 – a directory of spectral data files, 
3 – a directory of aggregate information, and 4 – a directory of spectral plots. In application it 
will need to be hosted on a ‘live’ website. 
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APPENDIX A 
GRAMS IQ Summary Report for Quarry 17 & 18 Classification Model.                         

Table A1: Quarry 18 Classification Model Validation Results  (Matching With Samples 
from Other Quarry Locations)
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Table A1 Continues 
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Table A2 Quarry 18 Classification Model Validation Results (Matching With Samples 
from  Quarry 18 and Other Quarry Locations) 
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Table A2 Continues 
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Table A3:  Quarry 17 Classification Model Validation Results (Matching With Samples       
from Other Quarry Locations) 
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Table A3 Continues
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Table A3 Continues 

 

 

 

 

 

 

 

 

 

 

 



 

68 
 

Table A4 Quarry 17 Classification Model Validation Results (Matching With Samples 
from  Quarry 17 and Other Quarry Locations)
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Table A4 Continues
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Table A4 Continues 
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GRAMS IQ Summary Report (Quarry 18) 
 

Date: Thursday, September 03, 2015 
File:
 C:\Users\CBIS\Documents\Oludare_Owolabi\SHA\CHEMOMETRIC_ANALYSIS\Quarry_Data\Qu
arry_18\Quarry_18_Corrected.tdfx 
Memo:  
 
Plot Name:   1-Eigenvalues 
Experiment:    Quarry_18_1XOL_3_450-2450 
Experiment Memo:   
Calibration Type:  Discriminate 
Diagnostic Type:  Cross Validation 
Number of Regions:  1 
Number of Samples:  11 
Number of Constituents:  0 
Number of Points:  2001 
Number of Factors:  1 
Number of Files Out:  3 
Number Ordering:  Sequential 
 
+-----------+ 
| Outliers | 
+-----------+ 
Samples Excluded: 
 File:  18B_1.spc  Memo:   
 
+-------------------------+ 
| Region Information | 
+-------------------------+ 

Region # Left Edge Right Edge Spacing Total Points Type 
1 450 2450 1 2001 Average 
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+--------------------+ 
| Preprocessing | 
+--------------------+ 
Mean Centering 
Baseline: None 
Pathlength Correction: None 
Derivative: None 

 
Result Property Value 

Plot Type Eigenvalues 
X-Variable Factor Number 
Y-Variable Eigenvalue 

Factors X-Axis 4 
Factors Y-Axis 4 

Constituents X-Axis  
Constituents Y-Axis  
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|   - Factors Data | 
 

Factors 
Average 

Predicted 
Distance 

Eigenvalu
e 

Extracted 
Error 

F-Ratio 
(REV) 

F-Test 
(REV) 

Imbedded 
Error 

Malinows
ki's 

Indicator 
Real Error 

(RE) REV Total % 
Variance 

1 0.3065568 118.7099 0 130427.6 1 0 0 0 0.0049413
06 99.73824 

2 0.2674689 0.1802387 0 216.1405 1 0 0 0.0041593
35 

8.188574E
-06 99.88967 

3 0.4015889 0.121288 0.0039458
91 160.0721 1 0.0186011

1 
6.49896E-

05 
0.0028641

37 
6.064399E

-06 99.99157 

4 1.146312 0.0094246
1 

0.0027171
59 13.82725 0.9995561 0.0156875

3 
5.845178E

-05 
0.0008462

167 
5.238514E

-07 99.99949 

5 5.144912 0.0006055
607 0 1 0.6815429 0 0 0 3.788542E

-08 100 

+--------------+ 
| Plot Data | 
+--------------+ 

Factor Number Eigenvalue 
1 118.70993 
2 .18023869 
3 .12128799 
4 .0094246101 
5 .00060556066 
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APPENDIX B 

 
BLIND SAMPLE SPECTRAL ANALYSIS 

1.0 BLIND SAMPLE QUARRY A SPECTRA ANALYSIS 
The average spectrum of blind sample of Quarry A was visually matched with all the spectra from 
all the quarries, the closest spectral signatures were from the following quarries: Quarry 3 
aggregate samples (Metagabbro Quartz-Diorite) collected in 2014, Quarry 1 aggregates samples 
(Amphbolite Schist) collected in 2014 and Quarry 15 aggregates samples (Gneiss) collected in 
2014-1. Figure B1 displays the spectra of the aggregate samples from Quarry A with other samples 
from the above quarries, for which chemical composition and index properties are given in Table 
B1. The Metagabbro Quartz-Diorite Rocks aggregates sample seems to be the most likely spectra 
that are related to the spectrum of Quarry A. Both spectra reveal identical absorption bands at 
specific wavelengths. At wavelengths from about 600 nm to 1100 nm both spectra reveal the ferric 
ions (Fe 2+ and Fe 3+) usually present in Ferromagnesium mineral (Pyroxene), while at  1400 nm 
and 1900 nm in both spectra show the H2O functional group present in Feldspar. The AL-OH 
absorption near 2250 nm reveals the incipient alteration of the feldspar. Strong absorption of Mg-
OH near 2350 nm that are usually present in trioctahedral Mica suggests the presence of larger 
amount of micaceous minerals. The TSG software if acquired will be able to reveal the best match 
within the quarries as well as give the mineralogical composition of Quarry A.   
 
Table B1:  Mineralogical composition and Index Properties of aggregates produced from 
Aggregates at Quarries 3, 1 and 15 Respectively.   
Mineral  Percentage Composition  

Quarry 3 2013 
Metagabbro Quartz-
Diorite Rocks (Most 
Likely) 

Quarry 1 Amphbolite 
Schist  2014 (Likely) 

Quarry 15 Gneiss 
2014-1 (Likely) 

Quartz 75-87% 0-10 %  
Feldspar 3-5%   
Micaceous Mineral 5-10%   
Ferromagnesian 
Mineral 

5-10%   

Plagioclase  35-50%  
Actinolite  50-60%  
Opaques  0-2%  
Clinzosite  0-5%  
Sphene  1-3%  
Index Properties    
Specific Gravity 2.799 3.017 2.858 
LA (%) 15 20 15 
Frictional Category HDFV-III HDFV-III HDFV-III 
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Figure B1: Spectra of Blind sample of Quarry Sample A and 
Metamorphic and Intrusive Igneous Rocks at Quarry 3 (Most 
Likely), Amphibolite Schist at Quarry 1 (Likely) and Gneiss at 
Quarry 15 (Likely) 
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2.0 BLIND SAMPLE QUARRY G SPECTRA ANALYSIS 
 
The spectral signature of blind sample from Quarry G was also matched, the closest spectra 
signatures were from Quarry 3 aggregate samples collected in 2012 (Metagabbro Quartz-Diorite) 
and Quarry 4 aggregates samples (Mafic Extrusive Igneous Rock (Basalt)) collected in 2013. 
Figure B2 displays the spectrum of aggregate samples from Quarries 3 (2012) and 4 (2013), for 
which chemical composition and index properties are given in Table B2. The most likely matched 
spectrum is with the aggregate samples from Quarry 3. Both spectra reveal identical absorption 
bands at similar wavelengths. At wavelengths from about 600 nm to 1100 nm both spectra reveal 
the ferric ions (Fe 2+ and Fe 3+) usually present in Ferromagnesium mineral (Pyroxene). At around 
2400 nm wavelength very weak and faint hydroxyl (OH) combinations in Mica and Feldspar are 
manifested in both spectra, which are the reflection of the low composition of Mica (5-10%) and 
Feldspar (3-5%) present in the aggregate.   
 
Table B2:  Mineralogical composition and Index Properties of aggregates produced from Quarry 

3 (2012) and Quarry 4 (2013) 
 

Mineral  Percentage Composition 
Quarry 3 Metagabbro 
Quartz-Diorite  
2012(Most Likely) 

Quarry 4  
Mafic Extrusive 
Rock (Basalt) 2013 
(Likely) 

Quartz 75-87%  
Ferromagnesian 
Mineral 

5- 10% 17% 

Micaceous Mineral 5-10%  
Feldspar 3-5% 60% 
Olivine  17% 
Opaque Minerals  3% 
Sericite  3% 
   
Index Properties   
Specific Gravity 2.838 2.933 
LA (%) 14 14 
Friction Category HDFV-III HDFV-II 
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Figure B2: Spectra of Blind Sample of Quarry Sample G 

and Metagabbro Quartz-Diorite 

 
 
 
 
 



78 
 

3.0 BLIND SAMPLE QUARRY H SPECTRA ANALYSIS 
The closest spectra that matched the spectrum of blind sample of Quarry H were the spectra of 
aggregates produced from Hornblende Trap Rock  at Quarry 15 in 2014 (II), Metagabbro Quartz-
Diorite Rocks at Quarry 3 in 2014  and Amphibolite Schist at Quarry 1 in  2014 respectively 
(Figure B3). The three spectra reveal identical absorption bands at similar frequencies. The most 
likely matched is the aggregates produced from Hornblende Trap Rock at Quarry 15 in 2014 (II). 
The mineralogical composition of aggregate samples (Hornblende Trap Rock) collected in 2014 
(1I) was not supplied; however, the mineralogical composition of aggregates produced in Quarries 
1 and 3 were given, Table B3.  The spectra of the aggregate samples  reveal  distinctive absorption 
bands around 700 nm to 1000 nm for the Ferrous and Ferric ions (Fe2+ & Fe3+) in Hornblende (Ca, 
Na9K)2-3- (Mg, Fe2+, Fe3+, Al)5(Si6(Si, Al)2O22)(OH, F)2. These absorption bands indicate the 
presence of ferric and ferrous ions in the crystal structures of these minerals. Absorptions near 
1400 nm and 1900 nm may be due to water (H2O modes) present in the Feldspar (Hunt and 
Salisbury, 1970). Strong hydroxyl absorptions due to AL-OH and Mg-OH between 2200 nm and 
2400 nm were observed, revealing the alteration in the Feldspar and Mica, respectively. The slight 
OH- vibration mode near 1801 nm in the spectra of three aggregates  samples  may be due to the 
vibrational modes normally present in epidote (Ca2(Al,Fe)Al2O• OH(Si2O7)(SiO4)) 
according to Sgavetti (Sgavetti et al 2006). Subsequently, the Hornblende present in the aggregate 
may have been altered to epidote, according to Hurbut and Klein (1985); Hornblende alters easily 
to chlorite and epidote.  
 

Table B3:  Mineralogical composition and Index Properties of aggregates produced from 
Hornblende Trap Rock   from Quarry 15 in 2014[1I]; Metagabbro Quartz-Diorite Rocks from 

Quarry 3 in 2013 and Amphibolite Schist from Quarry 1 in 2014 
Mineral  Percentage Composition  

Quarry 15 2014 (II) 
Hornblende Trap 
Rock   (Most Likely) 

Quarry 3 2014 
Metagabbro Quartz-
Diorite (Likely) 

Quarry 1 2014 
Amphibolite Schist 
(Likely) 

Quartz  75-87% 0-10% 
Hornblende    
Feldspar   3-5%  
Mica  5-10%  
Pyrite    
Ferromagnesium  5-10%  
Actinolite   50-60% 
Plagioclase   20-40% 
Opaques   0-2% 
Clinzosite   0-5% 
Sphene   1-3% 
    
Index Properties    
Specific Gravity 2.834 2.799 3.017 
LA (%) 15 15 20 
Friction Category HDFV-III HDFV-III HDFV-III 
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Figure B3: Spectra of Blind Sample of Quarry Sample H 
and Hornblende Trap Rock from Quarry 15 in 2014[1I]; 
Metamorphic and Igneous Rocks from Quarry 3 in 2013 
and Amphibolite Schist from Quarry in 2014. 
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4.0 BLIND SAMPLE QUARRY K SPECTRA ANALYSIS 
The average spectrum of blind sample of Quarry K was visually matched with all the spectra from 
the 25 quarries; the closest spectral signatures were from the following quarries: Quarry 13 
aggregate samples (Quartz Plagioclase Gneiss-Granite Gneiss) collected in 2013, Quarry 16 
aggregates samples (Gneiss or Granitic Gneiss) collected in 2014, Quarry 1 aggregates samples 
(Amphibolite Schist) collected in 2014 and Quarry 15 aggregates samples (Gneiss) collected in 
2014-1. Figure B4 displays the spectra of the aggregate samples from Quarry K with other samples 
from the above quarries, for which chemical composition and index properties are given in Table 
B4. The Quartz Plagioclase Gneiss-Granite Gneiss sample seems to be the most likely spectra that 
are related to the spectrum of Quarry K. Both spectra reveal identical absorption bands at specific 
wavelengths. At wavelengths from about 600 nm to 1100 nm both spectra reveal the ferric ions 
(Fe 2+ and Fe 3+) usually present in Fe-bearing minerals (mica), while at  1400 nm and 1900 nm 
in both spectra show the H2O functional group usually present within the mineral grains of 
Feldspar. Strong Hydroxyl combinations (AL-OH and Mg-OH) usually present in Feldspar and 
Mica are manifested in both spectra at wavelengths from about 2200 nm to 2400 nm. 
 
 

Table B4:  Mineralogical composition and Index Properties of aggregates produced from 
Aggregates at Quarries 13, 16, 1 and 15 respectively. 

Mineral  Percentage Composition 
Quarry 13 2013 
Quartz 
Plagioclase 
Gneiss-Granite 
Gneiss (Most 
Likely) 

Quarry 16 2014 
Quartz 
Plagioclase 
Gneiss-Granite 
Gneiss  (Likely) 

Quarry 1:  2014 
Amphibolite 
Schist (Likely) 

Quarry 15 
2014 (I) 
Gneiss  
(Likely) 

Quartz 45% 25-30% 0-10%  
Feldspar  35% 10-25%   
Mica  15% 5-15%   
Hornblende  5-15%   
Pyrite  < 1%   
Other  15-20%   
Actinolite   50-60%  
Plagioclase   35-40%  
Opaques   0-2%  
Clinzosite   0-5%  
Sphene   1-3%  
Index Properties     
Specific Gravity 2.666 2.772 3.017 2.858 
LA (%) 30 16 20 15 
Friction Category HDFV-III HDFV-III HDFV-III HDFV-III 
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Figure B4: Figure B1: Spectra of Blind sample of 
Quarry Sample K and Quartz Plagioclase Gneiss-
Granite Gneiss derived aggregates from Quarry 13 
(Most Likely), Gneiss or Granitic Gneiss derived 
aggregates from Quarry 16 (Likely), Amphibolite 
Schist at Quarry 1 (Likely) and Gneiss at Quarry 15 
(Likely). 
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5.0 BLIND SAMPLE QUARRY S SPECTRA ANALYSIS 
The closest spectra that matched the spectrum of blind sample of Quarry S was the spectrum of 
aggregates produced from Basalt  at Quarry 4 in 2013 (Figure B5  & Table B5). The two spectra 
reveal identical absorption bands at nearly the same frequencies. Both spectra show little or no 
distinctive OH absorption bands because there is usually little or no alteration in the feldspar and 
olivine present in Basalt. However, the presence of weak ferric and ferrous ions can be observed 
at about 1000 nm for both spectra, which is usually the diagnostic absorption band of the 
ferromagnesium mineral in iron-bearing minerals occurring in igneous rocks.  
 

 
 
 
 
 
 
 

Table B5:  Mineralogical composition and Index Properties of aggregates produced from 
Basalt at Quarry 4 (2013) with Blind Sample from Quarry S 

 
Mineral  Percentage Composition 

Quarry 4 2013 Quarry S 
Feldspar 60%  
Ferromagnesian 
Mineral 

17%  

Olivine 17%  
Opaque Mineral 3%  
Sericite  3 %  
   
Index Properties   
Specific Gravity 2.933  
LA (%) 14  
SS (%)   
BPN   
Average AIR   
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Figure B5: Spectra of Blind sample of Quarry Sample S and 
Sample Quarry 4 (Basalt) (2013) 
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SUMMARY OF BLIND SAMPLES RESULTS 
 

Table B6 shows a summary of the matching of the five blind samples.  
 

Table B6 Summary of Blind Samples Matching 
 

Blind 
Sample 
Quarry  

Matching 
Quarry/Rock Type 
(Most Likely) 

Quarry/Rock 
Type (Likely) 

Quarry/Rock 
Type  (Likely) 

Quarry/Rock Type  
(Likely) 

 A Quarry 3 (2014) 
Metagabbro Quartz-
Diorite 

Quarry1 2014 
Amphibolite 
Schist   

Quarry 15 
2014-1 
Gneiss 

Quarry 3 (2013) 
Metamorphic and 
Intrusive Igneous 
Rocks 

G Quarry 3 (2012) 
Metagabbro Quartz-
Diorite 

Quarry 4 2013 
Mafic Extrusive 
Rock (Basalt)  

  

H Quarry 15 2014 (II) 
Hornblende Trap 
Rock    

Quarry 3 (2014) 
Metagabbro 
Quartz-Diorite 

Quarry 1 
2014 
Amphibolite 
Schist 

Quarry 3 2013 
Metamorphic and 
Igneous Rocks 

K Quarry 13 2013 
Quartz Plagioclase 
Gneiss-Granite 
Gneiss 

Quarry 16 2014 
Quartz 
Plagioclase 
Gneiss-Granite 
Gneiss   

Quarry 1:  
2014 
Amphibolite 
Schist 

Quarry 15 2014 (I) 
Gneiss   

S Quarry 4 2013 
Basalt 
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APPENDIX C 
IDENTIFICATION AND ANALYSIS OF SIGNATURE OF AGGREGATE SAMPLES 

FROM OTHER QUARRIES NOT PRESENTED IN THE MAIN BODY OF THE REPORT 
 
 

 This appendix contains the spectral identification of the rest of aggregate samples derived from 
the remaining  quarries that were not presented in the main body of the report. In analyzing the 
spectra pattern of each of the aggregate samples, the same procedure used by Sgavatti et al 
(2006) was adopted. Although, there may be some slight differences in the spectra pattern in the 
metamorphic rocks as observed by Sgavatti et al (2006), the slight discrepancies were corrected 
by the information obtained from the USGS database (Appendix D). The spectra pattern symbol 
as contained in Table 4 has been used to identify the diagnostic peaks and troughs on the spectra 
of the aggregates samples presented. 
 
 
C.0 Spectra Identification and Patterns Analysis of Aggregate Samples from Quarry 5 
From Quarry 5 aggregates sample was collected only in 2014. The mineralogical composition of 
the aggregates collected in 2014 is shown in Table C1.  
 

Table C1: Rock type and mineralogical composition of aggregates produced from Phyllite at 
Quarry 5. 

Mineral Mineral Spectra 
Library Reference 

Percentage Composition 

Quartz  80-90 
Hornblende Appendix D10 3-5 
Pyrite Appendix D12 <1 
Mica Appendix D6 5-10 
Index Properties   
Specific Gravity  2.778 
LA (%)  28 
Friction Category  HDFV-I 

 
Figure C1 shows strong OH bands (AL-OH and Mg-OH) between 2200 nm and 2400 nm, which 
are indication of high alterations in the Hornblende (Ca2(Mg,Fe+2)4Al(Si7Al)O22(OH,F)2)  and 
the  trioctahedral Mica respectively. The weak ferrous and ferric electronic transitions in the visible 
near 400 nm are due to the Hornblende.  There is a strong indication of molecular H2O in the lattice 
structure of the sample at 1400 nm. However, since the most abundant mineral, Quartz (80-90%) 
in the aggregate is not spectra active at NIR, it was not possible to identify it in the spectra.   
 

C.1 Spectra Identification and Patterns Analysis of Aggregate Samples from Quarry 10 
Aggregate samples produced from Hornfels collected from Quarry 10 in 2014 were studied. The 
mineralogical composition of this aggregate is shown in Table 5. 
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Figure C1: Spectra of aggregates samples from Quarry 5. 
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Table C2: Rock type and mineralogical composition of aggregates produced from Hornfels at 

Quarry 10. 
Mineral Mineral Spectral 

Library Reference 
Percentage Composition 

Quartz  60-70 

Feldspar Appendix D16 1-5 

Mica Appendix D6 <1 

Others  25-30 

Index Properties   

Specific Gravity  2.679 

LA (%)  12 

Friction Category  HDFV-II 
 
 There are slight OH bands (AL-OH and Mg-OH) between 2200 nm and 2400 nm (Figure C2), 
which indicate small proportions of Feldspar and Mica present in the sample. There is also an 
indication of a small amount of water molecule in the lattice structure of the sample, while the 
visible range (350 nm to 1200 nm) reveals little concentrations of ferrous and ferric minerals.  
 
C.2 Spectra Identification and Patterns Analysis of Aggregates Produced from Diabase 
(Quarry 12 & 14) 
The spectrum is shown in Figure C3. Although the petrography data was not supplied for the 
aggregates produced from diabase in Quarry 12, the spectra reveals H20 vibrational modes at 1400 
nm and 1900 nm which are within the crystals of Plagioclase that normally occur in Diabase. As 
can be seen there are no distinctive AL-OH bonds because there are usually little or no alteration 
in the Feldspar (Plagioclase) in Diabase.  However, a slight alteration in the Mica present in the 
Diabase is noticeable at 2335 nm, where a Mg-OH vibrational mode is manifested. In addition, 
weak ferric and ferrous ironic electronic transition mode can be observed at about 1000 nm due to 
the Ferromagnesium mineral (Clinopyroxene) present in the aggregate sample.   This is usually 
the diagnostic absorptions due to electronic processes in iron-bearing minerals occurring in mafic 
rocks.  
There is not much significant difference in the two spectra of Quarry 14 (2013 & 2014). As can be 
seen there are very weak OH stretching modes in the spectra because there are usually little or no 
alteration in the Feldspar (Plagioclase) and Biotite in Diabase.  However, a slight alteration in the 
Mica (Biotite) present in the Diabase is noticeable at 2335 nm for the sample collected in 2014, 
where a Mg-OH vibrational mode is manifested. This means there is inception of alteration of the 
Mica later in the year 2014.  In addition, weak ferric and ferrous ironic electronic transition modes 
can be observed between 500 nm and 1000 nm, which are due to the Clinopyroxene 
{(Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6} and Hornblende (Ca2(Mg,Fe+2)4Al(Si7Al)O22(OH,F)2  in 
the sample.   This is usually the diagnostic absorptions due to electronic processes in iron-bearing 
minerals occurring in mafic rocks.  
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Figure C2. Spectra of aggregates samples from Quarry 10 
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Figure C3. Spectra identification and pattern analysis of 
aggregates samples produced from Diabase in Quarries 12 and 14
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C.3 Spectra Identification and Patterns Analysis of Aggregate Samples from Quarry 14  
Aggregate samples produced from Diabase at Quarry 14 in 2013 and 2014 were obtained for the 
study. The mineralogical composition of the aggregates are shown in Table C3. 
 
 

Table C3: Rock type and mineralogical composition of aggregates produced from Diabase at 
Quarry 14 

 
Mineral  Mineral Spectra Library 

Reference 
Percentage Composition 

 
 

2013 2014 

Clinopyroxene Appendix D15 50-55 50-60 
Plagioclase Appendix D2 30-40 35-50 
Hornblende Appendix D10  1-5% 0-10 
Quartz   5 0-2 
Pyrite, Biotite Appendix D12/D14 < 1 0-5 
Index Properties    
Specific Gravity  3.013 3.009 
LA (%)  18 19 
Friction Category  HDFV-III HDFV-III 
 
 
There is not much significant difference in the two spectra (Figure C4). As can be seen there are 
very weak OH stretching modes (2200 nm to 2400 nm) in the spectra because there are usually 
little or no alteration in the Feldspar (Plagioclase: Sodium Aluminum Silicate) and Biotite in 
Diabase.  However, a slight alteration in the Mica (Biotite) present in the Diabase is noticeable at 
2335 nm for the sample collected in 2014, where a Mg-OH vibrational mode is manifested. This 
means there is inception of alteration of the Mica later in the year 2014.  In addition, weak ferric 
and ferrous ironic electronic transition modes can be observed between 500 nm and 1000 nm, 
which are due to the Clinopyroxene {(Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6} and Hornblende 
(Ca2(Mg,Fe+2)4Al(Si7Al)O22(OH,F)2  in the sample. This is usually the diagnostic 
absorptions due to electronic processes in iron-bearing minerals occurring in mafic rocks.  
 
C.4 Spectra Identification and Patterns Analysis of Aggregate Samples from Quarry 15  
From Quarry 15 aggregates samples were collected in 2013 and two samples in 2014 respectively. 
The mineralogical composition of aggregates collected in 2013 is shown in Table C4. 
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Table C4. Rock type and mineralogical composition of aggregates produced from Gneiss at Quarry 15. 

 
Mineral Mineral Spectra Library  

Reference 
Percentage Composition 2013 

Quartz  25-30 
Hornblende Appendix D10 10-20 
Feldspar Appendix D16 15-25 
Mica Appendix D6 5-15 
Pyrite Appendix D12 1-5 
Other  5-20 
Index Properties   
Specific Gravity  2.807 
LA (%)  20 
Friction Category  HDFV-III 
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Figure C4. Spectra of aggregates samples collected in 

2014 from Quarry 14
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The mineralogical composition of the first aggregate samples collected in 2014 was not supplied 
but the rock type is Gneiss. The same is applicable to the second sample acquired in 2014; 
however, the rock type is Hornblende Trap Rock. The spectra of the aggregates samples shown 
in Figure C5 are also in reflectance and the corresponding absorptions wavelength positions are 
given in nanometer on each spectra. The spectrum of the aggregate sample collected in 2013 is 
on top of the stack and it reveals a distinctive absorption bands of about from about 700 nm to 
1000 nm for the Ferrous and Ferric ions (Fe2+& Fe3+) in Hornblende (Ca, Na9K)2-3- (Mg, Fe2+, 
Fe3+, Al)5(Si6(Si, Al)2O22)(OH, F)2. These absorption bands indicate the presence of ferric 
and ferrous irons in the crystal structures of these minerals. The bands near 1400 nm and 1900 
nm are due to water (H20 modes) present in the microscopic fluid inclusions within the mineral 
grains of the Feldspar (Hunt and Salisbury, 1970). There are indication of strong hydroxyl 
vibrational modes (AL-OH and Mg-OH) between 2200 nm and 2400 nm, revealing the alteration 
in the Feldspar and Mica respectively. The OH- vibration mode noticed near 1801 nm in the 
spectra of aggregates collected in 2013 and the first sample in 2014 may be due to the vibrational 
modes normally present in epidote (Ca2(Al,Fe)Al2O• OH(Si2O7)(SiO4)) as observed by 
Sgavetti et al 2006. Subsequently, the other minerals contained in the petrography information 
supplied may be epidote. In addition it may be that the Hornblende has altered to epidote, as 
according Hurbut and Klein, (1985); Hornblende alters easily to chlorite and epidote. There is 
not much significant difference between the spectra of the aggregate samples collected in 2014 
from the same quarry; however, the Mg-OH stretching mode observed at 2330 nm of the second 
aggregate sample collected in 2014 seems to be the strongest.   
 
 
C.5 Spectra Identification and Patterns Analysis of Aggregate Samples from Quarry 16  
Aggregate samples produced from Gneiss or Granite Gneiss at Quarry 16 in 2013 and 2014 were 
obtained for the study. The mineralogical composition of the aggregates are shown in Table C5. 
The spectrum of the aggregate sample collected in 2013 is in blue and there are manifestation of 
Ferrous and Ferric Irons (Fe2+& Fe3+) absorption bands as a result of the Fe-bearing mineral 
(Pyriboles) in the sample. 
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Figure C5. Spectra of aggregates samples collected in 2013 and 

2014 from Quarry 15 
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Table C5: Rock type and mineralogical composition of aggregates produced from Gneiss or 
Granite Gneiss at Quarry 16 

 
Mineral Mineral Spectra Library 

Reference 
Percentage Composition 

 
 

2013 2014 

Quartz  30 25-30 
Hornblende Appendix D10  5-10 

Pyrite Appendix D12  < 1 
Mica Appendix D6 15 5-15 

Feldspar Appendix D16 30 10-25 
Other   15-20 

Pyriboles  25  
Index Properties    
Specific Gravity  2.771 2.772 

LA (%)  14 16 
Friction Category  HDFV-III HDFV-III 

 
 
There are clear indications of the presence of water (H20) in the microscopic fluid inclusions 
within the mineral grains of the Feldspar as a result of the H2O modes observed at 1400 nm and 
1900 nm respectively.  There is probably no alteration in the Feldspar as there was no AL-OH 
vibrational mode, but there is a distinctive Mg-OH stretching mode at about 2340 nm indicating 
incipient of alteration in the Mica. There is not much significant difference between the spectra of 
the aggregate samples collected in 2014 from the same quarry; however, the presence of Al-OH 
stretching mode at 2253 nm suggests the incipient of alteration in the Feldspar in the sample in the 
following year (2014), this may suggest the difference in the LA value.  The ferrous and ferric 
ionic transitions as a result of the Hornblende (Ca, Na9K)2-3- (Mg, Fe2+, Fe3+, Al)5(Si6(Si, 
Al)2O22)(OH, F)2 and Pyrite (Fe2S) were also observed at 690, 907 and 1000 nm respectively. 
 
C.6 Spectra Identification and Patterns Analysis of Aggregate Samples from Quarry 25 
Samples were collected in 2009 and 2010 and the rock type was Dolomite, which comprises mostly 
of Dolomite (CaMg(CO3)2. The spectra of the two  samples are shown in Figure C7. The first 
spectrum on top is from the sample collected in 2009, while the bottom spectrum was for the 
sample collected in 2010.  Weak Ferric and Ferrous absorptions bands at around the visible range 
at 553 nm and 1002 nm reveal the presence of ferrous ions substituting in a small amount of 
calcium.  The spectra clearly displays a strong carbonate band (CO3 

2-) normally present in 
combination of  Dolomite (CaMg(CO3)2 at 2318 nm. In addition there is a weak band of carbonate 
at 1858 nm, which is typical of dolomite minerals. The bands near 1400 nm and 1900 nm are due 
to water (H20 modes) as a result of the microscopic fluid within the mineral grains of the Calcite.  
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Figure C6.  Spectra of aggregates samples collected in 2013 and 
2014 from Quarry 16 (Gneiss or Granite Gneiss)
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The prominence of the absorption bands of the Dolomite mode suggests the abundance of the 
Calcite-Dolomite in the aggregate. There is no significance difference in all the spectra.  
 
 
Conclusion 
From the results of the spectra analysis and absorption variability, it can be concluded that the 
spectra pattern may be used to explain the variation in the frictional and physical properties of 
aggregates within a quarry from one location to the other. In addition the basis for the identification 
of the diagnostic features of the minerals and ions have been given in Table 1 as well as from 
information from the spectral library of the associated minerals in the USGS database. The 
absorption pattern of the signature of the aggregates is related to the chemical composition of the 
aggregates; however, it was not possible to identify the presence of quartz as the mineral is not 
spectrally active in the NIR region. 
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Figure C7.  Spectra identification and pattern analysis of 
aggregates samples collected in 2009 and 2010 from 
Quarry 25
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APPENDIX D 
 

(The spectra library and analysis of each mineral that are present in all the aggregates from all 
the quarries-Source USGS Database) 

 
INDIVIDUAL SPECTRA AND DESCRIPTION OF THE MINERALS 

PRESENT IN AGGREGATES AS DERIVED BY USGS 
 
 

This appendix contains the spectra library and description of each of the minerals present 
in the aggregate samples as contained in the petrographic information supplied by SHA. 

The library was obtained from the USGS Digital Spectral Library splib06a 
Reference: 
R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. F. Kokaly, and S. J. Sutley, 
2007, USGS Digital Spectral Library splib06a, U.S. Geological Survey, Data Series 231.Other 
resources on spectroscopy, including binary data of this and other spectral libraries can be found 
at http://speclab.cr.usgs.gov. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://speclab.cr.usgs.gov/
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D1-ACTINOLITE (AMPHIBOLE GROUP)- Ca2(Mg,Fe+2)5Si8O22(OH)2 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/actinolite_hs315.html 

 
SAMPLE_DESCRIPTION: 
With the note: "The very weak band near 0.63 µm indicates the presence of some ferric iron, 
which is often abundant in actinolites." 

Reference 

Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1973, Visible and Near-Infrared Spectra of 
Minerals and Rocks: VI. Additional Silicates. Mod. Geol. 4, pp 85-106. 
 
 
 

 
 
 
 
 
 
 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/actinolite_hs315.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/actinolite_hs315.html


 

102 
 

D2-PLAGIOCLASE   (NA END MEMBER, FELDSPAR GROUP)    - NaAlSi3O8 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/albite_hs66.3b.html 

 

 
SAMPLE_DESCRIPTION: 
"This sample of albite is quite pure, and consequently has a high reflectivity throughout this 
wavelength range (.4-2.5 µm). The only two bands displayed (near 1.4 and 1.9 µm) are due to 
water in fluid inclusions." Also apparent in the spectrum is a weak 2.2-µm absorption, apparently 
due to some alteration that is not detectable under microscopic examination.  
References 

Hunt, G.R., J.W. Salisbury, 1970, Visible and near-infrared spectra of minerals and rocks: I. 
Silicate minerals. Modern Geology, vol. 1, pp 283-300. 

 

 
 
 
 
 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/albite_hs66.3b.html
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D3-CLINOZOISITE- Ca2Al3(SiO4)3(OH)  (EPIDOTE GROUP)  
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/clinozoisite_hs299.html 

 

 
SAMPLE_DESCRIPTION: 
"This sample forms a continuous series with epidote. The sample contains some epidote and 
quartz impurities. The sample probably contains some Mn3+ and Fe3+ substituting for its 
aluminium, which would explain its reddish-brown color. The presence of these ions would also 
explain absorption features at 0.41, 0.46, 0.55, and 0.8 µm. Absorption features attributed to the 
hydroxyl and water appear at longer wavelengths than normal." 

Reference 

Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1973, Visible and Near-Infrared Spectra of 
Minerals and Rocks: VI. Additional Silicates. Mod. Geol. 4, pp 85-106. 
 

 

 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/clinozoisite_hs299.html
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D4-SPHENE -: CaTiO(SiO4)         
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/sphene_hs189.html 

 
SAMPLE_DESCRIPTION: 
"N-16 Sphene 189B--Ontario. CaTiO(SiO4): Sphene is a widespread accessory mineral in 
igneous and metamorphic rocks. Calcium may be replaced partially by strontium and barium, or 
by the rare earths and thorium, the higher valencies of the latter being balanced by the entry of 
trivalent iron and aluminum into the titanium position. The titanium may be partially replaced by 
Sn, Nb and Ta, with possible compensation of Na replacing Ca. Finally, one O may be replaced 
by OH or F. This particular sample is a dark reddish brown, apparently due primarily to both the 
ferric iron and titanium, as described for rutile (see Part III, p. 204, spectrum 0-15A). The 
presence of about 5 percent opaque magnetite lowers the overall reflectivity of this sample." 

Reference 

Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1973, Visible and near-infrared spectra of minerals 
and rocks: VI. Additional silicates. Modern Geology, v. 4, p. 85-106. 
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D5-FERROMAGNESIAN MINERAL (PYROXENE)- (Ca,Mg,Fe2+,Fe3+,Ti,Al)2(Si,Al)2O6 

 http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/pyroxene_hs119.html 

 
SAMPLE_DESCRIPTION: 
"I-4 Augite 119B-Oaxaca, Mexico. (Ca, Mg, Fe2+, Fe3+, Ti, Al)2(Si, Al)2O6: Augite is an 
important ferromagnesian mineral of igneous rocks, and is particularly common in basic rocks. It 
occurs, but less frequently, in intermediate and ultrabasic rocks. The spectrum is dominated by 
both Fe2+and Fe3+ absorptions, which produce a very general broad band centered near 1.0µ. The 
faint bands near 2.3µ are probably due to hydroxyl combinations even though the 1.4µ band is 
indiscernible." 

Reference 

Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1973, Visible and near-infrared spectra of minerals 
and rocks: VI. Additional silicates. Modern Geology, v. 4, p. 85-106. 
 

 
 
 
 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/pyroxene_hs119.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/pyroxene_hs119.html
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D6-MICACEOUS MINERAL PHLOGOPITE (MICA GROUP)- K2(Mg, Fe2+)6- (Si6Al2P20)(OH, F)4. 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/phlogopite_hs23.html

 
SAMPLE_DESCRIPTION:"P-15 Phlogopite 23B--Ontario. K2(Mg, Fe2+)6- (Si6Al2P20)(OH, F)4. 
Phlogopite occurs most commonly in metamorphosed limestone's and in ultrabasic rocks. It is difficult to 
obtain a reliable spectrum from this sample because of interference bands. The spectrum falls off quite 
steadily from 2.0µ into the blue of the visible, although no electronic features are well resolved. The 
absorption is, however, due to generalized absorption by both Fe2+ and Fe3+, the latter substituting for Al. 
The important features in the spectrum are the OH vibrational features at 1.38µ, 2.325µ, and 2.385µ. The 
latter two features are displaced from the location of the most intense bands in the other micas, as a result 
of the trioctahedral structure which provides for the domination of the MgOH bending modes 
combinations rather than the AlOH bending modes in the dioctahedral micas. However, there is still 
evidence for the possibility of some AlOH bending mode combination displayed by the weak features 
near 2.2µ, being present although these features could be due to the more common OH-lattice 
combinations." 

References 

Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1973, Visible and near-infrared spectra of minerals and 
rocks: VI. Additional silicates. Modern Geology, v. 4, p. 85-106. 

 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/phlogopite_hs23.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/phlogopite_hs23.html


 

107 
 

D7-MICROCLINE (FELDSPAR GROUP)- KAlSi3O8 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/microcline_hs107.html

 
SAMPLE_DESCRIPTION: 
Dimorphous with Orthoclase. 
"The spectrum (107B) displays a very intense OH band near 1.4µ with an accompanying feature 
near 2.2µ. The very weak band near 1.9µ indicates only a very small amount of H2O. The bands 
are consistent with the incipient alteration of this sample to kaolinite." Note, however, that the 
2.2-2.4 µm bands are those of muscovite (or similar mica), not kaolinite as noted by Hunt and 
others That is confirmed by XRD below. - R. Clark 

References  
Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1973, Visible and near-infrared spectra of minerals 
and rocks: VI. Additional silicates. Modern Geology, v. 4, p. 85-106. 

 

 
 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/microcline_hs107.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/microcline_hs107.html
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D8-ORTHOCLASE (FELDSPAR GROUP)- : KAlSi3O8 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/orthoclase_hs13.html 

 
SAMPLE_DESCRIPTION: 
Forms series with Celsian. Dimorphous with Microcline. 
"S-15. Orthoclase. Ruggles Mine, New Hampshire (13B). Orthoclase, KAlSi3O8, is a very 
common igneous rock-forming mineral, particularly in acidic and intermediate rock. Usually it 
contains 10 to 25% NaAlSi3O8. Orthoclase should be spectrally featureless in the near-infrared. 
The bands near 1.4 and 2.0µ are due to water present in microscopic fluid inclusions within the 
mineral grains." 

References 

Hunt, G.R., J.W. Salisbury, 1970, Visible and near-infrared spectra of minerals and rocks: I. 
Silicate minerals. Modern Geology, v. 1, p. 283-300. 

 
 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/orthoclase_hs13.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/orthoclase_hs13.html
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D9-OLIVINE (OLIVINE GROUP)- Mg2SiO4-Fe2SiO4 Fo80 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/olivine_hs285.html

 
SAMPLE_DESCRIPTION: 
A spectrum for this sample was published in: Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 
1973, Visible and near-infrared spectra of minerals and rocks: VI. Additional silicates. Modern 
Geology, v. 4, p. 85-106. 
With the note that the sample is Peridot, and the following comment: "This is a gem quality 
olivine which is 80Fo-20Fa. It contains a small amount of spinel as well as displaying a trace of 
iron oxide stain. The ferric iron band at 0.64µm is prominent in the larger particle size sample." 

References 

For additional information on the spectra of olivine see: King, T.V.V. and W.I. Ridley, 1987, 
Relation of the Spectroscopic Reflectance of Olivine to Mineral Chemistry and Some Remote 
Sensing Implications. J. Geophys. Res., 11,457-11,469. 

 
 
 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/olivine_hs285.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/olivine_hs285.html
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D10-HORNBLENDE (AMPHIBOLE GROUP)- Ca2(Mg,Fe+2)4Al(Si7Al)O22(OH,F)2 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/hornblende_hs16.html 

 
SAMPLE_DESCRIPTION: 
Forms series from Magnesiohornblende to Ferrohornblende."I-22 Hornblende 16B--Ontario. 
(Ca, Na9K)2-3- (Mg, Fe2+, Fe3+, Al)5(Si6(Si, Al)2O22)(OH, F)2: Hornblende is the name given to 
a very complex series which varies with respect to at least ten major components. This spectrum 
is quite typical of hornblende spectra, which display a rapid fall off in intensity from 2.0µ to the 
blue due to broad Fe2+ and Fe3+ absorption near 0.7µ and 1.0µ. The hydroxyl band at 1.4 is also 
reduced in intensity or missing, leaving only OH features at 2.33µ and 2.4µ." 

References  
Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1973, Visible and near-infrared spectra of minerals 
and rocks: VI. Additional silicates. Modern Geology, v. 4, p. 85-106. 

 

 

 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/hornblende_hs16.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/hornblende_hs16.html
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D11-FERRO-HORNBLENDE (AMPHIBOLE GROUP)- (Mg,Fe)2Mg5Si8O22(OH)2 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/hornblende_hs115.html 

 
SAMPLE_DESCRIPTION: 
Forms series from Magnesiohornblende to Ferrohornblende."S-1E. Amphibole, variety 
Hornblende. Brewster, N.Y., (115B). This is an impure sample, deep green in color. It displays 
the double band structure in the 0.6 to 1.1 µ region that is typical of the presence of both the 
ferric and ferrous ion. The presence of a light gray contaminant (muscovite) raises the 
reflectivity of the sample which is most obvious in the largest size range, and explains the 
anomalous (lighter?) reflectivity of that size fraction. The hydroxyl bands are not so strong as in 
tremolite and actinolite, which is typical of hornblende. The very weak bands in the visible near 
0.5, 0.45, and 0.5 µ are due to both the ferrous and ferric ions." 

References 

Hunt, G.R., J.W. Salisbury, 1970, Visible and near-infrared spectra of minerals and rocks: I. 
Silicate minerals. Modern Geology, v. 1, p. 283-300. 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/hornblende_hs115.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/hornblende_hs115.html
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D12-PYRITE (PYRITE GROUP-SULFIDE) - 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/pyrite_hs35.html

 
SAMPLE_DESCRIPTION: 

Forms series with Cattierite (CoS2). Dimorphous with Marcasite."SS-19. Pyrite. Rico, Colorado (35). Pyrite, FeS2, 
is the most common and widespread of sulphides. It occurs in igneous, metamorphic and sedimentary rocks, as well 
as in veins. In the visible, pyrite displays the reflectivity vs. particle size behavior that is peculiar to opaque minerals 
- ie. reflectivity decreases as particle size decreases. It is also interesting that decreased absorption in the red region 
of the visible results in a significant contrast in reflectivity from the red to the blue, despite the sample's overall low 
reflectivity. In the near-infrared, the spectral behavior of pyrite changes from that of an opaque material to that of a 
transparent one. This sample is contaminated with grinder steel, which is probably responsible for its low reflectivity 
throughout. The smallest grain size is the only one which shows a rise in reflectivity to longer wavelengths, 
producing what appears to be an absorption edge between 1.1 and 1.5µ. We feel, however, that this is an artifact of 
the contamination in this sample, and that it should display a weak ferrous ion band near 1µ like marcasite, before 
changing from transparent to opaque behavior." 

References 

Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1971, Visible and near-infrared spectra of minerals and rocks: IV. 
Sulphides and sulphates. Modern Geology, v. 3, p. 1-14. 

 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/pyrite_hs35.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/pyrite_hs35.html
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D13-AUGITE (CLINOPYROXENE )- (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/augite_nmnh120049.ht
ml

 
SAMPLE_DESCRIPTION: 
Diopside and hedenbergite form a complete solid solution series with physical and optical 
properties varying linearly with composition. Augite is a clinopyroxene in which some Na 
substitutes for Ca, some Al substitutes for both Mg (or Fe) and Si, and in which Fe and Mg  
contents are higher than in diopside or hedenbergite."Results of petrographic examination: One 
22.31g. piece, black, probably part of one crystal; some veining with lighter mineral (serpentine?) 
difficult to remove. Microscopic examination of hand-picked sample indicates about 1-2% 
contamination by low-index, iron stained mineral. Cleavage is virtually nonexistent, however, 
index of refraction and 2V point to augite." 

References 

Salisbury, J.W., Walter, L.W., and Vergo, N., 1987, Mid-Infrared (2.1-25µm) Spectra of Minerals: 
First Edition, U.S. Geological Survey Open File Report 87-263. 
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D14-BIOTITE (MICA GROUP)- K(Mg,Fe+2)3(Al,Fe+3)Si3O10(OH,F)2 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/biotite_hs28.html 

SAMPLE_DESCRIPTION: 

Forms series with Phlogopite. 

Usually in irregular foliated masses. Composition is similar to phlogopite but with considerable substitution of 
Fe+2 for Mg. There is also substitution by Fe+3 and Al for Mg and by Al for Si. In addition a series exists between 
phlogopite and biotite. The trioctahedral biotite structure is the same as that of phlogopite."S-5. Biotite. Bancroft, 
Ontario (28). A potassium magnesium-iron-aluminum silicate, essentially K(Mg,Fe)3AlSi3O10(OH)2. Biotite is a 
widely distributed accessory mineral in igneous rocks and also occurs in some metamorphic rocks. Ferrous and 
ferric ions cause a very broad band in the 0.6 to 1.5µm region, and the drop-off in the blue. Hydroxyl bands are 
barely observable in the spectra. There are several possible reasons for the lack of observable OH overtones in this 
spectrum: The OH groups are commonly oriented (because the mica flakes lie on their cleavage faces) so that the 
observation angle may preclude their observation in the spectrum; the fundamental OH stretch is normally much 
broader in biotite than in other micas; and the OH concentration in this sample may be particularly low, because the 
OH in biotite may be readily replaced by F, Na, Fe+2 etc." 

References 

Hunt, G.R., J.W. Salisbury, 1970, Visible and near-infrared spectra of minerals and rocks: I. Silicate minerals. 
Modern Geology, v. 1, p. 283-30. 

 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/biotite_hs28.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/biotite_hs28.html
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D15-CALCITE (CALCITE GROUP)- : CaCO3 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/calcite_hs48.html 

 

 
 
SAMPLE_DESCRIPTION:Forms series with Rhodochrosite. Trimorphous with Aragonite and Vaterite. "The 
sample appears colorless and mineralogically pure. Its spectrum clearly displays the strong carbonate bands from 1.8 
to 2.6µ as in the sample above, which are common to most carbonates. It also displays a weak band near 1.1µ and a 
fall-off in reflectivity less than 0.4µ, which can be attributed to the presence of ferrous ion substituting in small 
amount for calcium. An analysis of this sample shows that 0.09% of iron by weight is present. This chemical and 
spectral behavior is quite typical of calcite. Again, pilling of the finest size fraction probably produces the crossover 
of the spectral curves in the visible."The spectrum here indicates a pure calcite. The sample appears white with no 
contaminants under a hand lens. 

References 

Clark, R.N., T.V.V. King, M. Klejwa, G. Swayze, and N. Vergo, 1990, High spectral resolution reflectance 
spectroscopy of minerals: J. Geophys Res. 12653-12680. 

Hunt, G.R., J.W. Salisbury, 1971, Visible and near-infrared spectra of minerals and rocks: II. Carbonates. Modern 
Geology, v. 2, p. 23-30. 

 
 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/calcite_hs48.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/calcite_hs48.html
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D16-ALBITE (PLAGIOCLASE, NA END MEMBER, FELDSPAR GROUP) - NaAlSi3O8 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/albite_hs324.3b.html 

 
SAMPLE_DESCRIPTION: 
"This is the sodium end member of the albite-anorthite series and is composed of 90 to 100% 
albite. Its spectrum shows weak features near 0.65 µ (very broad) and near 1.0 µ, suggesting the 
presence of small amounts of both Fe+3 and Fe+2. The Fe+3 substitutes for aluminum, and the 
Fe+2 substitutes for the calcium, the latter in whatever anorthite is present. Hydroxyl and water 
bands are seen near 1.4 and 1.9 µ, and the AlOH bend OH combination feature near 2.2 µ is 
evident. The strength of this last band suggests incipient alteration of the sample, which is not 
apparent in hand specimen." Note: the spectrum of this sample shows a significant 2.2-µm band 
apparently due to alteration although (see microscopic examination below) it cannot be seen by 
visual examination (Clark, 1973). 
References 

Hunt, G.R., J.W. Salisbury, and C.J. Lenhoff, 1973, Visible and near-infrared spectra of minerals 
and rocks: VI. Additional silicates. Modern Geology, vol. 4, pp 85-106. 

 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/albite_hs324.3b.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/albite_hs324.3b.html
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D17-MUSCOVITE (MICA GROUP)- KAl3Si3O10(OH)2 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/muscovite_hs24.html 

 

 
SAMPLE_DESCRIPTION: 
"S-12. Muscovite. Effingham, Twp., Ontario (24). This light colored mica is essentially 
KAl3Si3O10(OH)3, but frequently contains small amounts of Fe+2 and Fe+3, Mg, Ca, Na, Li, F, 
and Ti. It is a widespread and very common accessory mineral in igneous rocks, particularly 
acidic ones. It is also common in metamorphic rocks. This sample displays hydroxyl bands at 
1.4µ and between 2.2 and 2.6µ. There is the suggestion of a ferrous ion band near 0.95µ. The 
two cross-overs of the larger size ranges are not significant, probably being caused by the 
tendency of the flat mica flakes to orient themselves horizontally, resulting in specular effects." 

References 

Hunt, G.R., J.W. Salisbury, 1970, Visible and near-infrared spectra of minerals and rocks: I. 
Silicate minerals. Modern Geology, v. 1, p. 283-300. 

 

 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/muscovite_hs24.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/muscovite_hs24.html


 

118 
 

D18-DOLOMITE (DOLOMITE GROUP)- CaMg(CO3)2 
http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/dolomite_hs102.html 

 
 
SAMPLE_DESCRIPTION: .p> Forms series with Ankerite and with Kutnohorite. 
"This is a recrystallized dolomitic marble, which displays the carbonate absorption features at 
longer wavelengths than typical for calcites. Weak absorption band at 1.0µm is due to ferrous 
iron, which is shown to be present at 0.03 wt.% in the sample." 

References 

Hunt, G.R., J.W. Salisbury, 1971, Visible and near-infrared spectra of minerals and rocks: II. 
Carbonates. Modern Geology, v. 2, p. 23-30. 
 
 

 
 
 

http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/M/dolomite_hs102.html
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