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Abstract 
 

For the incident response operations to be appreciated by the general public, it is essential that 
responsible highway agencies be capable of providing the estimated clearance duration of a 
detected incident at the level sufficiently reliable for motorists to make proper decisions such as 
selecting a detour route. Depending on the estimated clearance duration, the incident response 
center can then implement proper strategies to interact with motorists, ranging from providing 
incident information only to executing mandatory detouring operations. This study presents a 
knowledge-based system, based on the detailed incident reports collected by the Maryland 
CHART (Coordinated Highway Action Response Team) program between the years 2012 
through 2016, for such needs. The proposed system features its use of interval-based estimates, 
derived from the knowledge of the historical data with different confidence levels for each 
estimated incident clearance duration, and its rule-based structure for convenient updates with 
new data and available expertise from field operators. Since some key variables associated with 
incident duration often only become available as the clearance operations progress, the 
developed system with its sequential nature allows the users to dynamically revise the estimated 
duration when additional data have been reported. Our preliminary evaluation results have 
shown the promise of the developed system which with its invaluable historical information can 
circumvent many data quality and availability issues which have long plagued the applicability 
of some state-of-the-art models on this subject. 
 
 
Keywords: incident clearance duration, knowledge-based model, association-rule mining, hybrid 

modeling method   



3 
 

RESEARCH BACKGROUND  
 
To contend with the non-recurrent congestion, caused mainly by various types of incidents, most 
responsible highway agencies over the past decade have implemented reasonably efficient 
response plans, ranging from providing the information of incident location to the motorists to 
deploying full-scale detouring operations. Such practices, however, are not sufficient in the ITS 
(Intelligent Transportation Systems) era because most en route drivers would like to have more 
information to make a proper route choice decision. Control center operators, aside from 
devoting full efforts to clear incidents, also need to decide the most cost-effective management 
strategy, such as offering travel time information of alternate routes for either advisory or 
mandatory detour operations. The difficulty in advancing the state of such practices to have those 
desirable functions mainly lies in the lack of real-time estimated clearance duration (or entire 
incident duration) for detected incidents, which consequently prevents the responsible agency 
from estimating the resulting queue lengths, impacts on the ramp flows, surrounding local 
arterials, and travel times. 
 
Over the past several decades, transportation researchers have devoted considerable efforts on 
estimating incident duration with various techniques, including continuous statistical models (1-
16), discrete/classification methods (17-22), neural-network approaches (23-30), and hybrid 
modeling techniques which integrate different methods (31-37). Also, some of them developed 
time-sequential models to account for the fact that incident information at the operations center is 
acquired over the life of the incident (4, 7, 24, and 35). The accuracy of those models is highly 
dependent on available variables, collected by the field response agencies, and the data quality as 
well as their statistical properties of available data samples. Hence, depending on the underlying 
assumptions of such models and their consistency with the distributions of collected incident 
data, such models mostly suffer from lacking the transferability and the difficulty for use and 
update by the highway agencies. Thus, despite their contributions to advancing state of the arts 
on this subject, providing estimated incident duration during non-recurrent congestion or guiding 
responsive traffic operations remains to be done in most highway networks. 
 
Furthermore, in review of the incident response practices in most state highway agencies (38), 
one may recognize that a variety of factors and their complex interrelations have limited the field 
applications of various existing models or tools for estimating incident duration. Examples of 
those challenges include: 1) a large number of variables (e.g., incident type, lane blockages, 
available resources) may have significant impacts on the clearance duration of a detected 
incident; 2) many of those critical factors, such as incident type (i.e., collision with fatality, 
collision with property damage, or collision with personal injury), responders (i.e., the need of 
towing, medical, and/or fire units), and environmental conditions, are qualitative in nature and 
often neither available nor collectable during the incident response and clearance process; 3) 
available models or tools may not be sufficiently robust to contend with the inevitable missing 
data or data errors due to human-factor related issues; 4) the quantitative output from some 
elegant advanced models may not directly correspond to the available management actions 
during incident response operations; and 5) most commonly and critically, many responsible 
highway agencies do not have an effective system to collect various critical data associated with 
incident response operations in real time at the desirable level of accuracy. 
 



4 
 

 
In response to the above concerns and in view of the uniquely rich incident response data 
available in the Maryland CHART (Coordinated Highway Action Response Team) program over 
the past 20 years (39), this research has developed a knowledge-based system for robustly 
estimating the incident clearance duration, allowing control center staff to select the most 
effective ATIS (Advanced Traveler Information System) and response strategy when tackling 
the non-recurrent congestion. The selection of the knowledge-based models was due to the 
following concerns: 1) most variables associated with incident duration are mainly collected by 
the responsible agencies via approximation, not precise measurement; 2) due to the emergency 
nature of incident response and clearance many vital data are qualitative and/or not collected; 3) 
the experience and expertise of some senior responders could be very valuable in estimating the 
required incident duration, especially when facing large missing data; 4) the distribution of key 
variables in the incident database is often inconsistent with the underlying assumptions of many 
available statistical models; and 5) the employed method for such needs ought to be transparent 
and convenient for field operators to understand, evaluate, and update with most recent available 
information. 
 
The proposed model, designed for field application, has the following distinct features: 1) using 
the information and knowledge embedded in a large body of prior incident records to derive 
effective estimation rules which are convenient for update, and also flexible for incorporating 
with the experience/judgement of field operators or respondents; 2) constructed with a 
knowledge-based structure that allows efficient enhancement with additional incident cases and 
rules; and 3) an interval-based output to correspond to available traffic operations and 
information distribution strategies during the incident response process. A graphical interface of 
the proposed system is shown in Figure 1.  Development procedures for all estimation rules are 
detailed in the ensuing sections. 
 
This study defined the incident clearance time (CT) as the time elapsed from arrival of the first 
response unit at the scene to the complete clearance of the incident. Note that the selection of 
clearance duration, instead of the entire incident duration, is since most incident response times 
under the Maryland-CHART highway patrolling strategy are quite stable, varying only in a very 
indifferent range. 
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(a) Main cover (intro) 

 
(b) Incident type input and updated CT 

 
(c) Pavement and Hazmat related input and 

updated CT 

 
(d) Location input and updated CT 

FIGURE 1 Examples of the software interface 

STUDY SCOPE: I-95 in Maryland  
 
To develop an incident clearance time estimation model, the research first applied the incident 
dataset of years 2012-2016 from CHART II Database for derivation of estimation rules. The data 
of the first 4 years (2012~2015) were used for model calibration, and the final year (2016) was 
used for model evaluation. The data from the first six months (January-June) in 2017 were used 
for the model update. As a prototype system, its spatial scope covers only MD I-95 from exit 27 
to exit 109, and the data include incidents with collision only. Similar models for incidents 
resulting in only shoulder-lane blockage have also been developed in the final system, but not 
reported hereafter.  
 
Table 1 shows those variables recorded during each incident event, which are incident type, 
location, time, lane blockage information, involved vehicle information, environmental 
conditions, response unit information, etc.   

Incident clearance time prediction programIncident clearance time prediction ─     □ × Incident clearance time prediction program

• Collision
• Travel lane blockage
• Property Damage only

Next
Summary Estimated Clearance time

Incident clearance time prediction ─     □ ×

Back

30 mins 60 mins 120 mins

Average CT = 35 mins

10~45 60%
10~55

10~85
70%

80%

Fatality Personal Injury Property Damage only

Type Involved vehicles Responder Pavement & Hazmat Time LocationCenter

Home

Incident clearance time prediction program

HazmatDry Snow/Ice Chemical wet Unspecified

• Collision with Property Damage
• Travel lane blockage
• 1 Travel lane blocked 
• NO TOW service
• WET pavement condition
• NO hazard material related

30 mins 60 mins 120 mins

Wet

Average CT = 35 mins

10~40
10~50

10~80
70%

80%

60%

Summary Estimated Clearance time

Incident clearance time prediction ─     □ ×

Type Involved vehicles Responder Pavement & Hazmat Time LocationCenter

NextBackHome

Incident clearance time prediction program

Summary

Prince 
George's

Howard Baltimore
City

Baltimore Harford Cecil

• Collision with Property Damage
• Travel lane blockage, 1 Travel lane blocked 
• NO TOW service
• WET pavement condition
• NO hazard material related
• WEEKEND, NIGHT time
• 2 Cars and NO TRUCK involved 
• BALTIMORE region

30 mins 60 mins 120 mins

Average CT = 25 mins

10~30
10~35

10~45
70%

80%

60%

Estimated Clearance time

Incident clearance time prediction ─     □ ×

Type Involved vehicles Responder Pavement & Hazmat Time LocationCenter

BackHome END
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TABLE 1 List of Key Factors Associated with the Response/clearance of a Detected Incident 

Category Variables Classification 

Incident type Incident type 
Collision with Fatality (CF),   

Collision with Personal Injury (CPI),  
Collision with Property Damage (CPD) 

Time 

Hour indicator AM-peak (7AM~10AM), Day time (10AM~4PM),  
PM-peak (4PM~7PM), Night time (7PM~7AM) 

Weekend indicator Weekend, Weekday 
Holiday indicator Holiday, Non-Holiday 
Season indicator Spring, Summer, Fall, Winter 

Location 
County indicator Prince George, Howard, Baltimore,  

Baltimore City, Harford, Cecil 
Direction indicator Northbound, Southbound 

Exit number indicator Exit 27, …, Exit 109 

Environmental 
condition 

Pavement condition indicator Dry, Wet, Snow/Ice, Chemical wet, Unspecified 
Hazard material related Yes, No 

Operation center Center indicator AOC, TOC3, TOC4, TOC5, SOC, Others 

Lane blockage 

# of blocked lanes* 1, 2, 3, 4… 
# of blocked shoulders 0, 1, 2, 3… 

# of blocked travel lanes** 0, 1, 2, 3… 
# of blocked traffic lanes 0, 1, 2, 3… 

# of blocked auxiliary lanes*** 0, 1, 2, 3… 
Travel lane blocked in tunnel Yes, No 

Travel lane blocked in toll Yes, No 

Involved vehicle 

# of total involved vehicles**** 1, 2, 3, 4… 
# of involved passenger cars 0, 1, 2, 3… 

# of involved trucks 0, 1, 2, 3… 
# of involved motorcycles 0, 1, 2, 3… 

Responder 

# of total response units 1, 2, 3, 4… 
# of arrived CHART 0, 1, 2, 3… 
# of arrived Police 0, 1, 2, 3… 

# of arrived Fireboard 0, 1, 2, 3… 
# of arrived Medical service 0, 1, 2, 3… 
# of arrived TOW service 0, 1, 2, 3… 

FIRST responder CHART, Police, Fireboard, Medical, Tow 
* Lanes = Shoulders + Travel lanes 
** Travel lanes = Traffic lanes + Auxiliary lanes  
*** Auxiliary lane includes on-ramp, off-ramp, acceleration lane, deceleration lane, and collector/distributor lane 
**** Vehicle includes passenger car, truck, bus, cyclist, pedestrian, and motorcycle 
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DATA PREPROCESSING 
 
To remove potential data errors by system operators, which often occurred during the real-time 
incident response and management process, the research team has taken the following steps after 
consulting with field operators.  

Step 1) If the difference between the event-cleared time and the all-blocked-lane-
reopened time, including shoulders, is larger than 5 minutes (see Figure 2 (a)), the 
all-blocked-lane-reopened time is used as the event-cleared time in computing the 
incident clearance time.    

Step 2) If the difference between the all-blocked-lane-reopened time and the all-blocked-
travel-lane-reopened time is larger than 32 minutes, the sum of the all-travel-lane-
reopened time plus 32 mins is used as the event-cleared time in computing the 
incident clearance time. The logic behind this step can be seen from Figure 2 (b) 
where the 90% of the open time of all blocked lanes, including shoulders, for all 
recorded incidents are within 32 minutes difference from the open time of blocked 
travel lanes. 

Step 3) Since some recorded incident events show an unreasonably short clearance time 
due to various reasons, the 10% quantile is used as the lower boundary to trim the 
available data.  

 

 
 (a) 

 
 (b) 

FIGURE 2 (a) Distribution of time differences between the all-lane-reopen times and the 
event-cleared times, (b) distribution of time differences between the travel-lane-reopen 
times and the all-lane-reopen times. 
  

Quantile 10% 30% 50% 70% 80% 90% 95%

Time(mins) 0.05 0.08 0.17 0.83 1.63 6.77 20.53

 Incident type: Collision 
 Data period: January of Year 2012 ~ December of Year 2015

Quantile 10% 30% 50% 70% 80% 90% 95%

Time(mins) 0.00 0.00 0.00 0.67 12.13 32.44 48.07

 Incident type: Collision 
 Data period: January of Year 2012 ~ December of Year 2015
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The final dataset after the data preprocessing is shown in Figure 3.  
 

 
FIGURE 3 Distribution of clearance times after the data preprocessing. 

MODEL DEVELOPMENT 
 
In view of the large number of qualitative factors, the team first categorized the incident data 
based on those major factors, and then searched for classification rules to divide the incident data 
into several categories based on incident clearance time (CT), using the association rule mining 
method and hybrid modeling method which fit well into the knowledge-based modeling. 
Association rule mining method is commonly used to analyze data for frequent if/then patterns 
and to identify the most important relationships (40-41). It has the advantages for users to 
interpret the resulting relationships and to implement the results in practice. Hybrid modeling 
method is mainly selected to integrate different methods based on incident duration natures (38). 
It enables the developed system to provide the estimate in a sequential manner, and to deal with 
an incident with missing data. Moreover, from each category of incident clearance time, several 
ranges of estimated clearance duration were selected according to approximately 60%, 70%, and 
80% of probability for field operators to make a proper assessment. Note that the selection of 
confidence thresholds can be specified by the users based on the available incident response 
resources and the quality of available data recorded during the incident clearance process. 
 

Incident Categorization 

Note that key factors associated with the resulting incident clearance time have complex 
relationships with one another. To sort out such relationships, all available incident data were 
categorized with the following steps: 1) dividing all incident data into two categories: shoulder-
only-blockage and travel-lane-blockage; 2) providing the mean incident clearance time and its 

Quantile 10% 30% 50% 70% 80% 90%

Time(mins) 7.7 18.4 29.4 41.9 52.5 71.2

 Incident type: Collision 
 Data period: Year 2012 ~ Year 2015

CT
(mins)

Sample size

Original After 
step 1-2

After
step 3

< 30 3,475 (54%) 3,609 (56%) 2,959 (51%)

30~60 1,943 (30%) 1,990 (31%) 1,990 (34%)

60~120 831 (13%) 682 (11%) 682 (12%)

≥ 120 214 (3%) 182 (3%) 182 (3%)

Total 6,463 6,463 5,813

Mean 36.8 mins 34.1 mins 37.8 mins
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estimated ranges with approximately 60%, 70%, and 80% of probability; and 3) further dividing 
the travel-lane-blockage cases into several groups, based on the incident types and number of 
blocked travel lanes. Note that no further classification for shoulder-only-blockage cases was 
taken, because those incidents all lie in a very stable and small range. Additionally, the incident 
data for Collision with Fatality (CF), resulted in the travel-lane-blockage, was not further 
classified with the number of blocked lanes due to the small sample size.  
 
Such an initial estimate for each detected incident (see Figure 4) shall be useful for the operators 
to assess the potential impacts when the information for the full picture of the detected incident is 
not available in the clearance process yet.  

 
FIGURE 4 Initial incident categorization and estimated clearance duration.  
 

Development of Classification Rules  

Based on the incident categorization in Figure 4, the research can provide the initial clearance 
time information for each incident case. In the subsequent steps, both the association mining 
method and hybrid modeling method are applied to the last seven categories in the travel-lane-
blockage cases to increase the estimation accuracy. Note that the clearance duration for most 
shoulder-only blockage cases is around the interval of 30 minutes, so the team only considered 
the travel-lane-blockage cases in exercising these modeling steps for the further classification.   
 

Incident – Collision
Mean= 40 mins

10~45mins  60%
10~55mins  70%
10~90mins  80%

Shoulder only blockage
Mean= 35 mins

5~40mins  60%
5~45mins  70%
5~60mins  80%

Travel lane blockage
Mean= 45 mins

10~50mins  60%
10~60mins  70%
10~85mins  80%

Collision with Fatality (CF)
Mean= 235 mins

150~270mins  60%
120~300mins  70%
60~360mins  80%

Collision with Personal 
Injury (CPI)

Mean= 50 mins
15~60mins  60%
15~70mins  70%
15~95mins  80%

Collision with Property 
Damage (CPD)
Mean= 35 mins

10~45mins  60%
10~55mins  70%
10~85mins  80%

# of blocked travel lanes= 1
Mean= 45 mins

15~55mins  60%
15~65mins  70%
10~70mins  80%

# of blocked travel lanes= 2
Mean= 55 mins

20~70mins  60%
20~85mins  70%
15~90mins  80%

# of blocked travel lanes= 3+
Mean= 80 mins

30~110mins  60%
30~155mins  70%
25~210mins  80%

# of blocked travel lanes= 1
Mean= 35 mins

10~40mins  60%
10~50mins  70%
10~80mins  80%

# of blocked travel lanes= 2
Mean= 45 mins

15~70mins  60%
15~100mins  70%
10~110mins  80%

# of blocked travel lanes= 3+
Mean= 60 mins

20~90mins  60%
20~140mins  70%
15~140mins  80%• Data: year 2012~2015
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Collision with Personal Injury (CPI) and Collision with Property Damage (CPD) in the Travel 

Lane Blockage Cases  

There are six categories of CPI and CPD in the travel-lane-blockage cases, which are divided by 
the number of blocked travel lanes. To estimate the range of incident clearance time for each 
category for operation’s needs, the team first classified the data into “< 30 minutes” and “≥ 30 
minutes” using the association rule mining method. Then, from the “≥ 30 minutes” subset, the 
team searched other classification rules to classify the data into “< 60 minutes” and “≥ 60 
minutes”. Similarly, the team found classification rules to further categorize the expected 
incident clearance times for “< 120 minutes” and “≥ 120 minutes”. Finally, based on the 
distributions of these categories, the team produced three intervals of expected incident clearance 
time under the 60%, 70%, and 80% confidence levels. 
 
The procedures to model the CPI and CPD in the travel-lane-blockage events to generate 
classification rules for “< 30 minutes” and “≥ 30 minutes” as follows:  

Step 1) From the dataset, search for classification rules to classify the data into “< 30 
minutes” and “≥ 30 minutes” using the association rule mining method.  

Step 2) Select a critical rule with approximately more than 75% confidence level and the 
highest support level.   

Step 3) Filter out the data associated with the selected rule from the dataset and proceed 
with further classification for the remaining data.  

Step 4) Stop the classification procedures if no further rule for classification can be 
derived from the remaining data.  

Step 5) Otherwise, go to Step-1 and repeat the same procedures.    

Figure 5 shows an example of CPI with two blocked travel lanes. Using such hybrid rules for 
classification, the team found four classification rules for “< 30 minutes” and “≥ 30 minutes” and 
set up the estimated interval for incident clearance time for the remaining data.  



11 
 

 
* Numbers in parenthesis represent “the number of data that are correctly estimated by the rule in the remaining dataset / the 

number of data that is categorized by the rule in the remaining dataset” 

FIGURE 5  An example of the classification rules for “< 30 mins” and “≥ 30 mins” in 
the CPI with two blocked travel lanes.  
 
 
In the next step, the team applied the same classification procedures to the dataset classified in 
the subset of “≥ 30 minutes” in the previous step to further divide the data into “< 60 minutes” 
and “≥ 60 minutes”. Same procedures were also employed for “< 120 minutes” and “≥ 120 
minutes” categories. Figure 6 shows the results of this hybrid classification procedure for six 
intervals of estimated incident clearance time, such as “< 30 minutes”, “≥ 30 minutes”, “< 60 
minutes”, “≥ 60 minutes”, “< 120 minutes” and “≥ 120 minutes”, as an example of application 
for CPI with two-travel-lane blockage.  

TOW service arrived

Operation Center: AOC

DRY pavement condition

WINTER OR NIGHT time

Yes

No

Collision,  CPI,
# of blocked travel lanes = 2

< 30 
minutes

≥ 30 
minutes

≥ 30 
minutes

≥ 30 
minutes

Yes

No
Yes

No
Yes

• Training set: year 2012~2015, Test set: year 2016

Rule 1

Rule 2

Rule 3

Rule 4

Set Accuracy* Cumulative 
Accuracy

Cumulative 
Coverage

Training 83%(83/100) 83% 46%

Test 80%(24/30) 80% 53%

Training 74%(57/77) 79% 82%

Test 80%(12/15) 80% 79%

Training 79%(22/28) 79% 94%

Test 60%(6/10) 76% 96%

Training 100%(4/4) 79% 96%

Test -%(0/0) 76% 96%

Training 75%(6/8) 79% 100%

Test 100%(2/2) 77% 100%

# of remaining data = 8
(not classified)

< 30
minutes

No
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(a) Six expected incident clearance time ranges 

 
(b) Distributions and ranges of incident clearance time with different confidence levels 

 
(c) Classification rules and provided information 

FIGURE 6  An example of application for CPI with two-travel-lane blockage.  

< 30 minutes

≥ 30 minutes

78%(28/36)
67%(8/12)

80%(144/181)
80%(36/45)

CPI, 
# of blocked lanes = 2

Mean= 55 mins
20~70mins  60%
20~85mins  70%
15~90mins  80%

< 60 minutes

≥ 60 minutes

72%(116/162)
68%(30/44)

84%(16/19)
0%(0/1)

≥ 120minutes

86%(6/7)
-%(0/0)

< 120minutes

100%(12/12)
100%(1/1)

Accuracy
- Training set (2012~2015)

- Test set (2016)

CPI-2Lane-1

≥ 30 minutes

Mean= 30 mins
10~25mins  60%
10~30mins  70%
10~40mins  80%

82%(482/586)

CPI, 
# of blocked lanes = 2

Mean= 55 mins
20~70mins  60%
20~85mins  70%
15~90mins  80%

CPI-2Lane-2

≥ 60 minutes

Mean= 50 mins
25~60mins  60%
10~60mins  70%
10~70mins  80%

CPI-2Lane-4

CPI-2Lane-3

Mean= 80 mins
70~120mins  70%
60~120mins  75%
50~120mins  85%

84%(72/86)
Mean= 210 mins

≥ 240mins  60%
≥ 120mins  85%
≥ 60mins  100%

Clearance time(minutes)

Fr
eq

ue
nc

y

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

# of data: 12
Median: 90.7
Mean: 81.9
SD: 30.9
MIN: 18.2
MAX: 116.3

Clearance time(minutes)

Fr
eq

ue
nc

y

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# of data: 7
Median: 248.4
Mean: 208.5
SD: 98.9
MIN: 66
MAX: 312.1

Clearance time(minutes)

Fr
eq

ue
nc

y

0 50 100 150 200

0
1

2
3

4
5

6

# of data: 36
Median: 20.3
Mean: 30.1
SD: 30.8
MIN: 6.7
MAX: 154

Clearance time(minutes)

Fr
eq

ue
nc

y

0 50 100 150 200

0
2

4
6

8
10

12 # of data: 162
Median: 47.1
Mean: 50.5
SD: 26.9
MIN: 4.7
MAX: 167.3

CLASSIFICATION RULES Case: CPI-2Lane- 1
Mean= 30 mins

10~25mins  60%
10~30mins  70%
10~40mins  80%

Case: CPI-2Lane- 2
Mean= 50 mins

25~60mins  60%
10~60mins  70%
10~70mins  80%

Case: CPI-2Lane- 3
Mean= 80 mins

70~120mins  70%
60~120mins  75%
50~120mins  85%

Case: CPI-2Lane- 4
Mean= 210 mins

≥ 240mins  60%
≥ 120mins  85%
≥ 60mins  100%

Description Case
IF [TOW service arrived] THEN CPI-2Lane-2
IF [Operation center: AOC] THEN CPI-2Lane-2
IF [DRY pavement condition] THEN CPI-2Lane-1
IF [WINTER] OR [NIGHT time] THEN CPI-2Lane-2

ELSE THEN CPI-2Lane-1

Description Case
IF [NO TOW service] OR [NO TRUCK] THEN CPI-2Lane-2

IF
[MEDICAL service arrived] OR [Hazard materials related] 
OR [NIGHT time] OR [WET pavement condition] 
OR [Lane blocked in TUNNEL]

THEN CPI-2Lane-3

ELSE THEN CPI-2Lane-2

Description Case

IF
[More than 1 TRUCK involved] OR [More than 3 vehicles 
involved] OR [Hazard materials related]

THEN CPI-2Lane-4

ELSE THEN CPI-2Lane-3

Collision, CPI with 2 blocked travel lanes

IF "CPI-2Lane-2"

IF "CPI-2Lane-3"

IF "CPI-2Lane-1"

IF "CPI-2Lane-2"

IF "CPI-2Lane-3"

IF "CPI-2Lane-4"
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Figure 6 (c) shows the rule application process for the CPI with two blocked travel lanes. If an 
incident with CPI and two blocked travel lanes was reported, this event will go to the rules in the 
first table in Figure 6 (c). Based on the rules in the first table, this event will be estimated to 
belong to “CPI-2Lane-1” or “CPI-2Lane-2”. If this event is confirmed from the field report to 
belong to “CPI-2Lane-1”, the model will then provide the expected incident clearance time 
information associated with “CPI-2Lane-1”. If not, this event will go to the rules in the second 
table for further classification. This is the process to provide the expected incident clearance time 
information sequentially using the proposed system. Note that this hybrid classification model is 
to be executed on a sequential process, so it can provide an initial estimate in real time, even if 
full information for a detected incident from the field is not available.  
 

Collision with Fatality (CF) in the Travel Lane Blockage Cases  

There are only 25 and 5 events in the training set (2012~2015) and test set (2016), respectively, 
for this type of incidents. Thus, the modeling procedure for the CPI and CPD in the travel lane 
blockage cases is not suitable for those CF cases. In addition, most CF cases have incident 
clearance times longer than 120 minutes, so different boundaries were set for the clearance time 
ranges for such incidents. Rule-generation procedures used for analyzing CF incidents are 
summarized below:  

Step 1) Calculate the median value of the incident clearance time of the dataset and divide 
the dataset into two groups using the median value.  

Step 2) Search the classification rules to classify the data into those two groups using the 
association rule mining method.  

Step 3) Select a critical rule with approximately more than the 70% confidence level and 
the highest support level.  

Step 4) Divide the data into two subsets according to the selected rules and set up the 
estimated incident clearance time ranges, based on the distribution of incidents in 
each subset.  

Step 5) Stop the procedures if the estimated incident clearance time range is sufficiently 
robust for use by control center operators.  

Step 6) Otherwise, go to the first step and repeat the procedures for incident data in each 
subset.  

This classification mining method can sequentially classify the dataset into two groups, based on 
the median value. Thus, it can continuously reduce the distribution and range of the incident 
clearance times from each subset. Figure 7 shows the classification results and the estimated 
intervals for incident clearance time. Most estimated ranges for clearance time for collision-
fatality incidents have an interval of 60 minutes with approximately 70% of confidence.  
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FIGURE 7 Classification rules and incident clearance time ranges in the CF with travel 
lane blockage.  

 

MODEL EVALUATION AND UPDATES 
Model Evaluation  

In this study, the team used the data over four years (2012~2015) as the training set for model 
calibration. Based on the developed model results, the team then evaluated the model using the 
data in year 2016 as the test set. Table 2 shows the model calibration and validation results. The 
resulting accuracies for the estimated travel lane blockage incidents in the training set and test set 
are approximately 80% and 75%, respectively.  
 
TABLE 2 Model Validation Results  

 

Travel lane (TL) blockage cases 

CF 
CPI CPD 

Total 1  
TL block. 2 3+ 1 2 3+ 

Training set 
(2012~2015) 

100% 
(21/21) 

79.6% 
(399/501) 

82% 
(178/217) 

85.9% 
(79/92) 

77.2% 
(700/907) 

77.8% 
(140/180) 

80% 
(32/40) 

79.1% 
(1549/1958) 

Test set 
(2016) 

83.3% 
(5/6) 

77.5% 
(131/169) 

71.9% 
(41/57) 

62.5% 
(15/24) 

74.5% 
(222/298) 

70.3% 
(45/64) 

75% 
(6/8) 

74.3% 
(465/626) 

* Numbers in parenthesis represent “the number of data whose clearance time is correctly estimated by the model / the total 
number of data in the category” 

 
 
 
 

Incident – Collision, TL blockage, CF
Mean= 235 mins

150~270mins  60%
120~300mins  70%
60~360mins  80%

[More than 3 TRAVEL lanes blocked] OR [More than 2 VEHICLES involved] 
OR [More than 1 TRUCKS involved] OR [More than 1 TOW services required]

[More than 1 VEHICLES involved]

Mean= 230 mins
210~270mins  75%

170~310mins  100%

Mean= 170 mins
150~210mins  70%
150~270mins  80%
60~270mins  100%

[TRUCK involved]

YES

YES

NO

NO
Mean= 350 mins

330~450mins  60%
330~480mins  80%

120~480mins  100%

Mean= 210 mins
210~270mins  70%
210~300mins  80%
30~300mins  100%

YES NO
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Model Updates  

Since the new incident data are recorded daily to the database, to enhance the model's 
performance, the team has updated the developed model with the new dataset from the first six 
months (January-June) in 2017.  
 
The model update process is focused on those misestimated cases with more than 5 minutes of 
difference between the actual and the estimated incident clearance times. First, the team searched 
for a rule to discriminate those misestimated cases. Then, the team applied any newly derived 
rule as a supplemental rule or to revise the initial model. The difference between adding the 
supplemental rule and revising the initial model is that a newly derived rule will serve as a 
supplemental rule if it covers a small portion of cases or the estimated incident clearance time by 
this selected rule is notably different from the incident clearance time, estimated with the initial 
model rules. Otherwise, the initial model will be updated with newly derived rules. In addition, 
to prevent the model from over fit in the update process, the team assessed the impacts of the 
newly update rules on the early dataset. Table 3 shows the estimation results for the six 
sequential model updates.  
 
TABLE 3 Model Update Results  

Model 
Training 

set Test set Additional datasets for model updates 

2012~2015 2016 Jan. 2017 Feb. 2017 Mar. 2017 Apr. 2017 May. 2017 Jun. 2017 

Before updates 79.1% 
(1549/1958) 

74.3% 
(465/626) 

75.8% 
(25/33) 

77.5% 
(31/40) 

72.7% 
(24/33) 

67.7% 
(21/31) 

78.3% 
(36/46) 

79.3% 
(23/29) 

After update 
with Jan. 2017 

79.2% 
(1550/1958) 

74.4% 
(466/626) 

87.9% 
(29/33) 

85.0% 
(34/40) 

72.7% 
(24/33) 

67.7% 
(21/31) 

78.3% 
(36/46) 

79.3% 
(23/29) 

After update 
with Feb. 2017. 

79.8% 
(1562/1958) 

75.7% 
(474/626) 

87.9% 
(29/33) 

95.0% 
(38/40) 

75.8% 
(25/33) 

67.7% 
(21/31) 

78.3% 
(36/46) 

79.3% 
(23/29) 

After update 
with Mar. 2017 

79.8% 
(1563/1958) 

76.0% 
(476/626) 

87.9% 
(29/33) 

95.0% 
(38/40) 

100% 
(33/33) 

67.7% 
(21/31) 

78.3% 
(36/46) 

79.3% 
(23/29) 

After update 
with Apr. 2017 

80.0% 
(1566/1958) 

77.0% 
(482/626) 

87.9% 
(29/33) 

95% 
(38/40) 

100% 
(33/33) 

87.1% 
(27/31) 

78.3% 
(36/46) 

79.3% 
(23/29) 

After update 
with May. 2017 

80.1% 
(1569/1958) 

77.2% 
(483/626) 

87.9% 
(29/33) 

95% 
(38/40) 

100% 
(33/33) 

87.1% 
(27/31) 

93.5% 
(43/46) 

79.3% 
(23/29) 

After update 
with Jun. 2017 

80.2% 
(1570/1958) 

77.2% 
(483/626) 

87.9% 
(29/33) 

95% 
(38/40) 

100% 
(33/33) 

87.1% 
(27/31) 

93.5% 
(43/46) 

93.1% 
(27/29) 

* Numbers in parenthesis represent “the number of data whose clearance time is correctly estimated by the model / the total 
number of data” 

 
In brief, the developed knowledge-based model can achieve more than 85% accuracy after been 
updated with new data from six additional months. For example, the model accuracy for 
February 2017 (77.5%) is increased to 85.0% by the model updated with January 2017 data. The 
model accuracy for March 2017 (72.7%) is increased to 75.8% by the model after updated with 
the data of February 2017.  
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SYSTEM APPLICATIONS  
 
It should be noted that the proposed system has two unique features to account for the 
uncertainty associated with the nature of incident response and clearance: 1) using intervals with 
different confidences for estimating the clearance duration and 2) using three thresholds of 30 
minutes, 60 minutes, and 120 minutes to proceed with the classification of available incident 
data. Both key features were actually developed in response to the needs of field operators, and 
to be in consistent with their selection of potential response plans. For example, the responsible 
staff in the traffic control/response center are likely to provide only the incident nature and 
location to the general public if the clearance duration is estimated to be less than 30 minutes. 
However, more information about the detected incident and resulting traffic conditions, such as 
travel time information on available alternate routes, would be expected if the estimated 
clearance duration extends to between 30 and 60 minutes. Also, responsible traffic agencies may 
have to exercise advisory detouring plans and share all related information to the general public 
if the clearance duration of the detected incident is expected to prolong to between 60 to 120 
minutes. In general, mandatory detour operations may be implemented for severe incidents (e.g. 
involving fatalities or hazardous material) if it is likely to take more than two hours to recover 
the traffic conditions.  

CONCLUSION  
 
This study has presented a knowledge-based system for estimating the interval of a detected 
incident’s clearance time, using the incident data from Maryland-CHART between Years 2012 
and 2015 as the calibration set and Year 2016 as the evaluation set. The proposed system 
features its use of interval-based estimates, derived from the knowledge of the historical incident 
response data with different confidence levels for incident clearance time, and the rule-based 
structure for convenient updates with new data and for effective incorporation of expertise from 
field operators to revise the initial estimate. Its sequential nature allows the users to dynamically 
revise the estimate when additional data have been reported, because some key variables, 
affecting the duration of a detected incident, often only become available as the clearance 
operations progress.  
 
Our The preliminary evaluation results have shown the promise of the proposed system which 
with its invaluable historical knowledge can circumvent many data quality and availability issues 
plaguing the applicability of some state-of-the-art models on this subject. The proposed system 
can also be used to estimate reliable travel time during incidents, given the approximated or 
observed queue length. Furthermore, the proposed interval-based estimates with three thresholds 
(i.e., 30, 60, and 120 minutes) offer the information consistent with the potential ATIS/ATMS 
strategies (e.g., providing incident information only, advisory or mandatory detouring 
operations) for the responsible highway agencies to interact with en route motorists and the 
general public. Further research along this line includes: 1) extending the knowledge-based rules 
and embedded models to neighboring highway systems to evaluate its transferability and 2) 
developing a reliable and convenient update mechanism for experienced field operators to 
enhance and enrich the knowledgebase. 
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