BRIDGING MARYLAND, BECOMING ENGINEERS KNOWLEDGE SPLASH

(Complete Prior to Part 1)

Name: _____ Date: _____

Take three minutes and write down all the words you can think of relating to bridges and bridge design.

Bridging Maryland, Becoming Engineers

Name:_____

Part 1- Guided Notes

The Engineering Design Process involves:

- Identifying a ______
- Brainstorm solutions
- Select a_____
- _____a model or prototype
- _____ and evaluate
- Optimize the design
- _____ the solution

Bridges can be built over water, _____, or roads.

The size of a bridge size depends on its location.

Design constraints further influence the bridge design. Design constraints can include:

- Strength
- Navigation
- Safety
- Costs and material longevity

For the Salisbury Boulevard bridge, the design constraints required by Chief Engineer Hopkins included:

- Resistance to rust, rot, and ______
- More durable that just concrete
- Strong enough to withstand ______ and floods
- Strong and wide enough to carry multiple lanes of ______cars and trucks
- Aesthetically pleasing
- Not too _____; considerate of cost

Four different bridge forms are: slab, truss, _____, and suspension

Materials used in bridges include: wood, iron, stone, _____, and steel.

A bridge deck is supported by bridge abutments and sometimes ______.

A timber-concrete composite bridge is made from both ______ and _____.

Bridging Maryland, Becoming Engineers

DESIGN SELECTION EXCERCISE - Complete After Part 1

ADMINISTRATION

Name:_____

Date:_____

Below are four types of bridges that might have been brainstormed ideas for the Salisbury Boulevard bridge.

The chief bridge engineer identified eight desired characteristics for the bridge.

Place a check mark in the box if the characteristic is met. Place a question mark if you do not know the answer.

	RUE	Liestan Car	not been	Leistani Leistani	uthson pool	sand nuricane	nto carry a	ne cos	effective Action	neticilypeas	,re	
Wooden covered bridge												
Metal truss bridge												
Concrete arch bridge												
Timber-concrete composite bridge with treated wood												

Which alternative do you think meets the most desired characteristics?

BRIDGING MARYLAND, BECOMING ENGINEERS BRAINSTORM SOLUTIONS

(Complete prior to Part 2)

Name: _____

Date:

Make a quick sketch of a bridge you would design for Salisbury Boulevard in 1937.

Bridging Maryland, Becoming Engineers

|--|

Part 2- Guided Notes

The Engineering Design Process is ______. This means that a process involves repeating parts to improve the outcome. The steps are not simply a straight ladder. The process requires improvement on the experiment.

James Seiler developed a slab deck form of a timber-composite bridge in the early in the decade of the

He used ______ different sizes of chemically treated wood boards, connected them with nails, and covered them with ______.

This form could be expanded to any width or length. Seiler tested his designs in a ______.

Seiler shared his solution through publications and applying for a ______ from the United States Government.

Challenge Part 1:

The East Branch of the Wicomico River was channelized, and its banks were held by a timber bulkhead. The timber bulkhead could serve as the ______ for the Salisbury Boulevard bridge.

_____ help engineers determine what the ground is like at a specific location.

BRIDGING MARYLAND, BECOMING ENGINEERS SHARE YOUR SOLUTION

EXIT TICKET

(complete after Part 3)

Name:

Date:

1. Make a labeled drawing of your bridge design.

2. Write about how your tested it.

3. Write about how you made it better after testing it, and what you might change if you built another bridge.

4. Essential Question: How are bridges shaped by properties of their functions? How are they shaped by design constraints?

