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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

 

 Relieving traffic congestion and improving roadway safety are clearly top priorities 

for most state highway agencies. These two issues have grown to become very dependent 

on one another as substantial improvements to one could result in significant impacts on 

the other. For example, an increase in the congestion level is likely to cause a higher 

number of less severe accidents. This relationship seems to exist in the freeway accident 

data recorded by the Maryland State CHART program (Chang, 2002).  

There is  also a widespread belief that similar relationship between congestion levels 

and accidents may also exist on major arterials and/or streets. The severities of certain 

types of crashes in the statewide arterial network tend to decrease as congestion levels 

increase. However, rigorous studies conducted to analyze the complex relationship 

between congestion and accidents (including frequency, rate, and severity) on freeways 

or arterials have not yet been published in the transportation literature. 

   

1.2 Research Objectives 

 

 In response to the aforementioned needs, this study intends to achieve the following 

objectives: 

• Better understanding the relationship between congestion levels and the 

frequency, rate, and severity of accidents on freeways and arterials; 

• Developing statistical models for assessing the impacts of traffic congestion on 

the frequency, rate, and severity of accidents; 

• Identifying key factors that may have an impact on frequency, rate, and severity 

of accidents that occur at various levels of congestion. 

This study is based on a sample dataset from the Year 2000 accident information 

record of the Maryland Automated Accident Reporting System (MAARS) from the 
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Maryland State Highway Administration (SHA), including a total of 9944 accidents that 

occurred on five primary commuting freeways and five major arterials. In addition, to 

illustrate the highway geometric features of each accident analyzed, this study also refers 

to the SHA highway information system (including the traffic monitoring system and the 

roadway geometry database).   

 

1.3 Organization and Summary 

 

 Subsequent chapters of this report are organized as follows: Chapter 2 provides a 

comprehensive review of related literature, and includes the following three sections: 

review of accident frequency modeling, review of accident rate modeling, and review of 

accident severity modeling. In addition, a review of literature on identification of 

contributing variables and the definition of accident rate has also been included.  

Chapter 3 presents the relationship between accident frequency and congestion levels 

based on associated research findings. A graphical illustration and statistical test results 

are provided in the exploratory analysis section. The exploratory analyses suggests that 

the higher the level of congestion, the greater the probability that there will be a higher 

level of accident frequency. Based on the preliminary findings from exploratory analyses, 

this chapter further investigates the relationship between accident frequency and 

congestion by examining the impacts of several factors using advanced statistical 

methods, such as Poisson and Negative Binomial (NB) regression methods. This chapter 

will illustrate that the surrogate variable, volume per lane, increases the frequency of 

accidents on arterials and freeways. In addition, median type (divid ed roadway or not), 

intersection density (number of intersections per unit length on a link), and the number of 

through lanes have all been identified as significant variables contributing to the accident 

frequency model for arterials. Median width, auxiliary lane ratio (ratio between the length 

of auxiliary lanes and the link length), and the number of through lanes were identified as 

significant variables for frequency models.  

Chapter 4 presents the relationship between the accident rate and congestion levels 

based on three different analyses: a comparison of the average accident rate between peak 

and off-peak periods; a comparison of the accident rate among sampled roadway 
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segments experiencing different levels of congestion; and a bivariate correlation analysis 

between the accident rate and the congestion levels. These analyses are intended to 

examine whether highways with higher congestion levels yield a lower accident rate.  

Subsequent to the exploratory analysis results, Poisson and Negative Binomial 

regression methods were used to develop the accident rate model. The results indicate 

that the accident rate on arterials tends to decrease with the volume per lane. 

Additionally, the accident rate for freeways during off-peak hours appears to be random, 

exhibiting no systematic relationship with the traffic volumes. However, during the peak 

period, accident rates appear to increase significantly with traffic volumes. In addition, 

median type (divided roadway or not), intersection density (number of intersections per 

unit length on a link), and the total number of through lanes have all been identified as 

significant variables in the accident rate model for arterials. In contrast, the median width 

was the only variable identified that had significant impact on the accident rate model for 

freeways. 

Chapter 5 presents the relationship between accident severity and congestion levels. 

This chapter begins with an exploratory analysis that intends to identify factors that may 

be associated with accident severity (e.g. accident location, roadway geometric features, 

and driver conditions). An aggregated analysis of the relationship between the number of 

accidents at various levels of severity and congestion levels on sample freeways and 

arterials was conducted. Subsequently, other identified key factors were used as 

explanatory variables and an Ordered Probit regression model was applied to estimate 

severity models for arterial and freeway accidents. The estimation results indicated that 

accidents that occurred on more congested freeways and arterials were more likely to 

happen at a lower level of severity, however, levels of severity may vary when introduced 

to other contributing factors (e.g. at intersection or on roadway segment, driver condition, 

median type, and weather condition).  

Chapter 6 summarizes major findings of this study and offers additional 

recommendations for consideration for future research in areas that could potentially 

have an impact on traffic safety.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Despite the wealth of information available on accident analyses and congestion 

monitoring, most of the existing research focuses on the two key issues (congestion and 

traffic safety) separately and does not provide a concise examination of interrelationship.  

The potential relationship between congestion and accidents (e.g. the impacts of peak and 

off-peak traffic volumes on the accident rate or severity) has not been fully explored. 

This chapter provides an overview of some of the research findings related to this subject, 

and includes an analysis of the relationship between congestion and accident frequency, 

the impact of congestion on accident severity, and the variation of accident rate at 

different levels of congestion. 

This literature review is divided into the three sections. Recent studies and research 

methods for modeling accident frequency is summarized in Section 2.2.  Section 2.3 

summarizes related studies on accident rates.  Section 2.4 examines the state-of-the-art 

research related to accident severity along with key research results.  Finally, conclusions 

and research findings are reported in Section 2.5. 

 
2.2 Congestion level and accident frequency 

 

 Among a large body of recent literature in accident frequency analysis, some studies 

have made unique contributions and are summarized hereafter. For example, Shankar, 

Mannering and Barfield (1995) performed a study on a 61 km portion of I-90 located 

about 48 km east of Seattle. To minimize potential heteroskedasticity problems (see 

Greene 2000, pp 499-524) and to maximize the estimation efficiency, they partitioned the 

test portion of I-90 into ten fixed -length sections. A monthly time-series accident 

frequency data set was constructed, and the estimated model included solely the 

geometric variables (e.g., number of horizontal curves in a section and maximum 

horizontal curve radius in a section) and weather condition variables (e.g., number of 
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raining days in a month and maximum daily rainfall in a month). No examination of the 

relationship between accident frequency and congestion levels was conducted. 

 Shankar, Milton and Mannering (1997) developed an accident frequency model for 

local arterials in Washington State where they defined roadway sections by their 

homogeneous features such as number of lanes, roadway width, shoulder width, Annual 

Average Daily Traffic (AADT), speed, and peak hour factors. One of the primary 

findings of this study indicated that accident frequency increases with the AADT per 

lane. 

 With respect to the estimation method, a significant number of studies have been 

conducted using Poisson and Negative Binomial (NB) regressions to model accident 

frequency (Miaou, 1994), which is due to the discrete and non-negative nature of 

accident data. For example, Shankar, Mannering and Barfield (1995) used a NB 

regression to develop the I-90 accident frequency model. However, in a later study 

(Shankar, Milton, and Mannering, 1997), the criteria for defining sections result in a large 

number of sections with short length and having zero accident frequency. To contend 

with this data constraint, Shanker et al modeled accident frequencies as zero-altered 

probability processes, and used the zero-inflated Poisson (ZIP) and the zero -inflated 

negative binomial (ZINB) models to account for links without accidents. 

 In a related study, Persaud and Dzbik (1993) explored the nonlinear relationship 

between accident frequency and volume.  In their conclusion it was noted that on 

congested roadways there was a higher occurrence of accidents than on uncongested 

roadways with comparable volume levels. In addition, Abdel-Aty and Radwan (2000) 

used both Poisson and negative binomial regressions to model traffic accident occurrence 

and involvement on a sample freeway. They also used the likelihood ratio test to evaluate 

the over-dispersion of the Poisson model and re-estimate their models with Negative 

Binomial (NB) regression when over-dispersion was detected. The results indicated that 

an increase in AADT per lane also increases the likelihood of higher accident frequency. 

Greibe (2002) used generalized linear Poisson regression to establish the accident 

prediction models for urban roads. The AADT was found to be the most significant 

variable in the prediction of accident frequency. 
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 Abbas (2003) developed a number of statistical models based on the accident data 

over 10 years in Egypt. These models were based on the assumption that the number of 

accidents, injuries, fatalities and casualties are a function of exposure represented with 

AADT and AAVK (annual average vehicle kilometers). Five functional forms were 

evaluated in the study conducted by Abbas, they include linear, power, logarithmic, 

exponential and quadratic polynomial. The model, however, includes only AADT and 

AAVK as explanatory variables.  

 Note that in all of the aforementioned studies AADT per lane was always used as a 

surrogate variable of congestion. Besides AADT, only a small set of geometric and 

weather condition variables were used in the model specification. The weather conditions 

were accounted by variables such as number of rainy days and the maximum daily 

rainfall in a month.  

The results of additional studies on accident frequency seem to share a common 

finding that accident frequency is more likely to increase with the volume per lane. It is 

also important to note that Poisson and NB regressions are recognized as appropriate 

methods for accident related analysis (Miaou, 1994, and Shankar, Mannering and 

Barfield, 1995).  

   

2.3 Congestion level and accident rate 

 

 Studies on congestion level and accident rate indicate that the accident rate is defined 

as the ratio between the number of accidents and associated volumes. This implies that 

there is a linear positive correlation between the accident frequency and volumes. As 

mentioned in the previous section, the accident data are discrete and non-negative in 

nature. Therefore, it is appropriate to use Poisson or Negative Binomial regressions to 

analyze the accident-related data. For example, in a recent study Mayo ra and Rubio 

(2003) combined a multivariate Negative Binomial regression model and an Empirical 

Bayes procedure to predict the accident rate.  However, they did not examine the 

relationship between accident rate and traffic volumes in their research. 

 Karlaftis and Golias (2002) adopted a non-parametric statistical methodology, known 

as the hierarchical tree-based regression (HTBR), to model the accident rate with rural 



- 7 - 

road geometric characteristics and traffic volumes. Traffic volumes were not included as 

an independent variable in their regression model, and although the functional form needs 

not to be specified in advance, the estimation for HTBR requires a large sample size to 

form the hierarchical tree. 

 Regarding independent variable selection, Knuiman et al (1993) explored various 

methods for associating the median width with the highway accident rate, including using 

both a categorical variable and a continuous variable to represent the median width. The 

research findings indicated that accident rates decreased with an increased median width, 

and there was insignificant decrease in accident rates for medians less than 20 to 30 ft in 

width.  

Zhou and Sisiopiku (1997) examined the general relations between hourly accident 

rate and hourly traffic volume/capacity (v/c) ratios. With a U-shaped graph their study 

revealed that the accident rate decreases rapidly with an increase in the v/c ratio until v/c 

falls in the range of 0.55 to 0.65, at which time the rates gradually increases with the v/c 

ratio. Qin et al. (2003) and Kam (2002) both made some scaling operations to transform 

the relationship between “accident rate” and “exposure” into a linear from. Qin et al. 

(2003) used the estimated zero-inflated Poisson model to recalculate risk-oriented crash 

rates (e.g. the normalized crash rate). Kam (2002) used a disaggregated approach by 

matching accident records to a defined travel corridor to derive an induced exposure. His 

results revealed the existence of a polynomial function of a cubic order when crash rates 

were plotted against age groups. It was distinctly different with the U-shaped curve 

generated using the conventional approach. Both of the above approaches are also used to 

observe the relationship between accident rate and traffic volume. Martin (2002) explored 

the relationship between crash rate and annual average hourly volume on French 

interurban motorway networks. It was determined that such a relationship varies based on 

the number of through lanes on a roadway and the number of vehicles involved in 

accidents. 

In summary, very few of the existing studies have examined the relationship between 

accident rate and traffic volume. The results of studies on the accident rate seem to share 

a common conclusion that the relationship between the accident rate and traffic volume 

cannot be fully captured using a linear relation, and either the definition of accident rate 
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or the functional form of the relationship between accident rate and volume should be 

further evaluated.  

 

2.4 Congestion level and accident severity 

 

 The severity of an accident is often measured by the level of injury of the most-

seriously injured vehicle occupant (Chang and Mannering, 1999). Thus, the severity level 

has a discrete outcome and this nature of response data tends to suggest the use of a 

logistic regression in model development (e.g., Shankar and Mannering 1996; Chang and 

Mannering, 1999; Carson and Mannering, 2001). Accident severity can also be indexed 

using a binary variable such as a fatal or non -fatal indicator. In fact, this method was 

applied by Al-Ghamdi (2002) and it was determined that the following variables are most 

associated with the accident severity: location, accident type, vehicle type, license status, 

collision type, and accident time.  

In a study conducted by Lee and Mannering (2000), a nested logit model was used to 

isolate a wide range of factors that significantly influence the severity of run -off-roadway 

accidents. In the work by Amoros (2002), severity was measured by the ratio between 

fatal and injury accidents, which corresponds to the probability of a binomial setting. In 

addition to the logistic regression methods, some researchers (Kockelman and Kweon, 

2001, and O’Donnell and Connor, 1996) have adopted a multi-class crash analysis with 

the Ordered Probit models for accident severity analyses. Yau (2003) used stepwise 

logistic regression models to identify the risk factors associated with each vehicle type 

and indicated that weekday indicator and time-of-day are important variables that may 

affect the severity of injuries. 

In the literature on modeling accident severity, very few studies have attempted to 

address the relationship between the road traffic flow and crash occurrence. Among 

these, it was the work of Martin (2002) that has explored the relationship between 

accident severity and hourly traffic flow. Martin’s analysis of this relationship was 

implemented in two steps. First he addresses the probability of observing a crash and the 

number of vehicles exposed to the accident. Then he used a logistic regression to model 

the probability that a vehicle involves in injury-crashes. The explanatory variables used 
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were day-night difference, traffic volumes, and the interaction between these two factors. 

Martin did not reach any conclusion with respect to the relationship between the crash 

severity and traffic volumes. 

 

2.5 Summary 

 

Based on the literature review, it can be determined that traffic volume, as a surrogate 

variable of congestion, plays a significant role in accident frequency, rate, and severity 

analyses. Some significant relationships were identified including the relationship that a 

higher traffic volume usually results in higher accident frequency and that there is likely a 

U-shaped relationship between traffic volume and the accident rate. Although key factors 

affecting the accidents have been extensively studied, the complex relationship between 

congestion and accident, especially the impact of the traffic volume on accident severity, 

has not been sufficiently investigated. For example, the relationship between congestion 

and accident (rate or severity) may vary with time of day (e.g. peak or off-peak hours), 

and differs significantly between arterials and freeways. In addition, this relationship may 

also change with the roadway environment and weather conditions. 
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CHAPTER 3 

ACCIDENT FREQUENCY AND CONGESTION LEVEL 
 

3.1 Introduction 

 

This Chapter examines research results related to the relationship between accident 

frequency and congestion level on both sample freeways and arterials.  It will also 

examine accident frequency during peak and off-peak hours and the potential factors that 

may contribute to an increase in accident frequency during congestion. The primary focus 

of this chapter is to test the hypothesis that accident frequency on either freeways or 

arterials will increase with congestion level.  

To begin a comparison of average accident frequency (per hour per mile) between 

peak and off-peak periods is examined. This examination is based on the assumption that 

average accident frequency during peak hours is generally higher than average accident 

frequency during off-peak periods. The results of the comparison along with the data 

from five freeways and five local arterials are presented in Section 3.3. In addition to the 

exploratory analysis is a comparison of accident frequency between sampled roadway 

segments experiencing different levels of congestion, and a bivariate aggregate 

correlation analysis between accident frequency and congestion level. It is expected that 

highways with higher levels of congestion yield a higher accident frequency.  

Based on the preliminary findings from the exploratory analyses, this study further 

investigates the target relationship between accidents and congestion under the compound 

impacts of various contributing factors using advanced statistical methods such as 

Poisson and Negative Binomial regression models. The estimation results with respect to 

freeways and arterials are presented in Section 3.4 and Section 3.5. A brief description of 

the research procedures is presented in a flowchart in Figure 3-1.  
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Figure 3 -1 A flowchart of the research procedures for accident frequency analysis 

Select sample arterials and freeways

Perform necessary data aggregation

Perform exploratory analyses  to
identify potential variables and their
relationship to accident frequency

Multivariate statistical analysis

Model estimation and
conclusions

 

 

3.2 Data Set Available for Analysis 

 

In organizing a sample dataset for analysis, all accidents on each roadway link were 

converted into the following definition of accident frequency per mile: 

 

 Accident frequency = 

 

In addition, the data collected for analysis also includes accident nature, traffic flows, 

and roadway features in detail. Primary information associated with accidents and 

congestion was obtained from the highway information system and the Maryland 

Automated Accident Reporting System (MAARS) from Maryland State Highway 

Administration (SHA). The first database contains a list of roadway segments and 

associated traffic and geometric characteristics. The second database includes the 

location of accidents and related information. A careful integration of these two databases 

yielded the initial sample dataset that consists of five arterials and five freeway segments 

(see Table 3-1). The main reasons of choosing these sampled roadways are that they have 

Number of accidents on a link 

The link length  



- 12 - 

complete geometric and traffic information in two databases, and they are the major 

arterials/ freeways in th e Washington/Baltimore Area.   

 

Table 3-1 Sample arterials and freeway segments for accident frequency analysis  

Arterials  Freeway Segments  

Index Road 
name 

Segment location  Road 
name 

Segment location  

1 US1 Between Baltimore City Line 
and Washington DC Line I-495 Between Virginia State Line 

and I-95 Exit 27 

2 MD2 The entire length  I-270 The entire length  

3 MD97 The entire length  I-695 The entire length  

4 MD355 The entire length  I-95 Between Baltimore City Line 
and Virginia State Line 

5 MD410 The entire length  US50 Between Washington DC Line 
and Bay Bridge 

Sample 
Accidents 4542 5402 

Sample 
Year Year 2000 Year 2000 

 

To minimize the potential sampling bias and partially account for the stochastic 

nature of the accident distribution, this study aggregated short but interconnected links 

with common features as long links. The criteria used for link aggregation are 

summarized in Table 3-2. 
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Table 3-2 Criteria for link aggregation and the results 

 Arterials Freeway segments 

AADT level AADT level 

Median type (divided or not) Median width 
Main variables 

for clustering  

Number of through lanes  Number of through lanes  

US1 29 Links I-495 18 Links  

MD2 32 Links I-270 39 Links  

MD97 25 Links I-695 59 Links  

MD355 25 Links I-95 49 Links  

Clustering 

Results  

MD410 18 Links US50 14 Links  

 

Indicators of congestion levels 

 Since a rigorous definition of “congestion” is beyond the scope of this study and is 

one of the on-going research issues in the traffic community, the remaining analyses 

intend to use the “volume per lane” as the surrogate variable for congestion. Although it 

does not accurately reflect the actual congestion level on a given link, it should be 

sufficient for comparison purposes. 

  

3.3 Exploratory Analyses  

 

 The following exploratory analysis intends to investigate whether or not the accident 

frequency increases with congestion level using three different comparisons, which 

include: 

• A comparison between peak-hour (7-9AM and 4-6PM) and off-peak-hour 

accident frequencies, using the hypothesis that on most highway segments the 

average peak-hour accident frequency should be higher than off-peak-hour 

accident frequency, if a higher level of congestion is more likely to cause more 

frequent accidents. 
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• The second analysis performed a cross-section comparison of accident 

frequencies on five sample arterials and freeways to evaluate whether highways 

with higher levels of congestion yield more accidents. 

• The third analysis was conducted to evaluate the correlation between accident 

frequency and volumes per lane, which was used as a surrogate variable 

representing congestion level. 

 

Comparison of accident frequency during peak and off-peak hours 

 Figure 3-2 through Figure 3-6 illustrates the differences between peak-hour and off-

peak-hour accident frequencies for five sample arterials. Figure 3-7 through Figure 3-11 

illustrates the same comparison for five sample freeways. As reflected in graphical 

illustrations, the average accident frequency during peak hours is higher than the accident 

frequency during off-peak hours on all sample arterials and freeways. Results of 

statistical tests (see Table 3-3) and an econometric method (see Table 3-4) have further 

confirmed this relationship.  

 

Figure 3 -2 A comparison of the accident frequency on MD2 between peak hours 
and off-peak hours 
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Figure 3 -3 A comparison of the accident frequency on MD355 between peak 
hours and off-peak hours  
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Figure 3 -4 A comparison of the accident frequency on US1 between peak hours 
and off-peak hours  
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Figure 3 -5 A comparison of the accident frequency on MD410 between peak 
hours and off-peak hours  
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Figure 3 -6 A comparison of the accident frequency on MD97 between peak hours 
and off-peak hours  
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Figure 3 -7 A comparison of the accident frequency on I-495 between peak hours 
and off-peak hours  
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Figure 3 -8 A comparison of the accident frequency on US50 between peak hours 
and off-peak hours     
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Figure 3 -9 A comparison of the accident frequency on I-695 between peak hours 
and off-peak hours  
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IS695
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Figure 3 -10 A comparison of the accident frequency on I-270 between peak 
hours and off-peak hours  
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Figure 3 -11 A comparison of the accident frequency on I-95 between peak hours 
and off-peak hours  
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A statistical test was performed to examine the equality of average accident frequency 

during the peak and off-peak periods for all sampled roadway segments. The test results 

are listed in Table 3-3. 

  

Table 3-3 Mean Equality tests and results 

Hypothesis  

The average accident frequency during peak period is equal 

to the average accident frequency during off-peak periods 

among all five sample local arterials  

Data used 
Accident frequency during peak hours (7-9AM and 4-6PM) 

Accident frequency during off peak hours 

Test results of five sample surface streets 

Route Name MD2 MD355 US1 MD410 MD97 

Sample Size (n ) 32 25 29 18 25 

F-ratio  6.509 9.344 7.467 6.233 1.681 

F 1,2(n-1) [0.975] 3.996 4.043 4.013 4.130 4.043 

Conclusion Reject Reject Reject Reject Accept 

Test results of five sample freeway segments 

Route Name I-495 I-695 I-95 I-270 US50 

Sample Size (n ) 18 39 59 49 14 

F-ratio  2.345 28.084 12.300 12.838 1.482 

F 1,2(n-1) [0.975] 4.130 3.967 3.923 3.940 4.225 

Conclusion Accept  Reject  Reject  Reject  Accept 

 

From the test results in Table 3-3, it was determined that the means of accident 

frequency during the peak and off-peak periods are significantly different for MD2, 

MD355, US1, MD410, I-695, I-95, and I-270. To further investigate the hypothesis that 

peak periods generally have a higher accident frequency than off-peak periods, the 

dummy variable method was used (Greene, 2000) to evaluate the target relationship. The 

test results are summarized in Table 3-4. 
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Table 3-4 Procedures and results of the dummy variable method (Greene, 2000) 

Hypothesis 

H1: Accident frequency (peak hour) > Accident frequency (off-

peak hour) 

i.e. H0: d = 0; H1: d > 0 

Test procedures 
ii Dumy εδµ ++= *  

Set Dum  = 1, if the sample is in peak hour 

     =    0, otherwise 

Data used 
Accident frequency during peak hours (7-9AM and 4-6PM) 

Accident frequency during off peak hours 

Test results of five sample surface streets 

Route Name MD2 MD355 US1 MD410 MD97 

Sample Size (n ) 32 25 29 18 25 

T-statistic of  

Dum coefficient 
2.551 3.057 2.733 2.497 1.297 

T2n-2 (0.95) 1.669 1.676 1.672 1.688 1.676 

Conclusion 
Reject H0 

Accept H1 

Reject H0 

Accept H1 

Reject H0 

Accept H1 

Reject H0 

Accept H1 
Accept H0 

Test results of five sample freeway segments 

Route Name I-495 I-695 I-95 I-270 US50 

Sample Size (n ) 18 39 59 49 14 

T-statistic of  

Dum coefficient 
1.531 5.299 3.507 3.583 1.217 

T2n-2 (0.95) 1.688 1.665 1.658 1.661 1.701 

Conclusion Accept H0 
Reject H0 

Accept H1 

Reject H0 

Accept H1 

Reject H0 

Accept H1 
Accept H0 
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The results for MD97, I-495 and US50 are the only areas that do not support the 

hypothesis that average accident frequency during peak hours is higher than the average 

accident frequency during off-peak hours.  

Further analysis of the relationships between accident frequency per mile per link and 

the AADT per lane per link on MD97 (as shown in Figure 3-12) indicated that there were 

some data points (represented in the circled area, located in Carroll County and up to 

Pennsylvania State Line) that caused unexpected results. In fact, this segment of MD97 is 

quite a distance away from any urban areas and has no significant work-related peak-hour 

traffic. Therefore, it is reasonable to expect that the peak-hour accident frequency does 

not vary significantly from the off-peak-hour accident frequency.  

 

Figure 3 -12 The relationship between accident frequency and AADT per lane on 
MD97 
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On I-495 and US50, the failure to accept the hypothesis that accident frequency 

differs between peak periods and off-peak periods can potentially be attributed to two 

factors: both freeways have a high volumes throughout the peak and off-peak periods, 

and factors other than congestion may contribute significantly to an increase in accident 

frequency on those freeways. 
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Cross-section comparison of the accident frequency 

 The following analyses are designed to further test the hypothesis that highways with 

higher levels of congestion should experience a higher accident frequency if there is a 

high correlation between accident frequency and congestion. The focus of this analysis is 

to compare the mean of the accident frequencies per mile between sample roadway 

segments. 

Table 3-5 summarizes the results of the ANOVA tests for both the sample freeways 

and arterials. The conclusion from this test found that the average accident frequency of 

sample arterials during off-peak hours exhibits no significant difference among sampled 

arterials. However, a distinct difference does exist during the peak hour accident 

frequency among the sampled arterials and in the accident frequency on freeways during 

both peak and off-peak hours. A plausible explanation for the test results is that all 

sample arterials experience little congestion during off-peak periods and as a result, 

accident frequencies are more random in nature, and not correlated with factors such as 

traffic volume. One may also assume that the inconsistency in peak-hour accident 

frequency is due to substantial differences in congestion levels as evidenced in the peak-

hour volume per lane for sample arterials shown in Figure 3-13. 
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Table 3-5 ANOVA tests and results 

Balanced ANOVA test for arterials  

Hypothesis  
The means of accident frequency are statistically equal across all 

five arterials 

ANOVA test 

parameters 

The number of factor levels (treatment groups): k = 5  

The number of observations within each factor level: n = 18 

Data used 
Accident frequency in peak hours (7-9AM and 4-6PM) 

Accident frequency in off peak hours 

Test results on the arterial dataset 

 Dependent Variable Y F 975.0
85,4F  Conclusion 

1 Peak-hour accident frequency 2.64 2.48  Reject 

2 Off-peak accidents frequency 1.96 2.48  Accept 

Unbalan ced ANOVA test for freeways 

Hypothesis  
The means of accident frequency are statistically equal across five 

freeways 

ANOVA test 

parameters 

The number of factor levels (treatment groups): k = 5  

The number of observations within each factor level:  

ni = {18, 39, 59, 49, 14} 

Data used 
Accident frequency in peak hours (7-9AM and 4-6PM) 

Accident frequency in off peak hours 

Test results on the freeway dataset  

 Dependent Variable Y F 975.0
85,4F  Conclusion 

1 Peak-hour accident frequency 6.29 2.42  Reject 

2 Off-peak accidents frequency 4.89 2.42  Reject 
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Figure 3 -13 The hourly volume per lane on five arterials  

Hourly volume per lane -- In peak hours

0

200

400

600

800

1000

1200

1400
1 4 7 10 13 16 19 22 25 28 31

Link Index

MD2

MD355

US1

MD410

MD97

Hourly volume per lane -- In off-peak hours

0

200

400

600

800

1000

1200

1400

1 3 5 7 9

11 13 15 17 19 21 23 25 27 29 31

Link Index

MD2

MD355

US1

MD410

MD97

 
 

Bivariate correlation test between the accident frequency and volume per lane 

Figures 3-14 through 3-23 presents the relationship between volume per lane and the 

resulting accident frequency on each link for both sample arterials and freeways. These 

graphical relationships reveal the following critical information: 

♦ Some approximate linear relationship between accident frequency and 

volume per lane exists. 

♦ Other factors may contribute to an increase in accident frequency as 

evidenced in the variance of the linear trend. 

As a result of these, the remaining multivariate analysis between accident frequency 

and main contributing factors will be based on the Poisson and Negative Binomial 

models, rather than the multiple linear regression. 

  

Figure 3 -14 Accident frequency versus volume for MD2 
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Figure 3 -15 Accident frequency versus volume for MD355 
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Figure 3 -16 Accident frequency versus volume for US1 
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Figure 3 -17 Accident frequency versus volume for MD97 
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Figure 3 -18 Accident frequency versus volume for MD410 
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Figure 3 -19 Accident frequency versus volume for I-270 
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Figure 3 -20 Accident frequency versus volume for I-95 
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Figure 3 -21 Accident frequency versus volume for I-695 
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IS695
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Figure 3 -22 Accident frequency versus volume for I-495 
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Figure 3 -23 Accident frequency versus volume for US50 
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3.4 Model Estimation for Arterials 

 

 There are a variety of factors that may contribute to an increase in accident frequency. 

The previous exploratory analysis indicates that a single factor may not completely 

explain the relationship between accident frequency and congestion level. Therefore, this 

study further employed multivariate statistical methods to investigate such a relationship.  

 Based on the results in Section 3.3 and the information found in the literature review, 

the set of variables for inclusion in the analyses are listed below: 

• The dependent variable of the accident frequency model is accidents per mile 

during peak or off-peak hours. 

• The set of independent variables available for model development are: 

q x1: Annual average peak hour volume and off-peak hour volume – “volume” 

q x2: Median type (divided or not) – “median ” 

q x3: Number of intersections per unit length on a link – “intdensity” 

q x4: Section length – “length ” 

q x5: Number of through lanes – “thruln” 

From the correlation matrix of the independent variable (Table 3-6), it becomes clear 

that the number of intersections and the section length of road links are highly correlated. 

Therefore, the remaining analysis uses intersection density (the number of intersections 

divided by the section length) instead of the number of intersections directly. In addition, 

there is a high correlation between the number of through lanes and median type or 

section length, resulting from the design properties and the link-clustering operations. For 

example, divided-median roadway links are usually associated with a higher number of 

through lanes as opposed to undivided-median roadway links, explaining the positive 

correlation between these two variables.  
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Table 3-6 Correlation matrix for candidate variables 

Y Accidents per mile 

x_1 Volume per lane 

x_2 Divided median or not 

x_3 Number of intersections 

x_4 Length of the roadway link  

x_5 Number of through lanes 

                               Correlation Matrix 

 
             Y         X_1           X_2         X_3         X_4 
Y        1.00000                                            
X_1      0.33999      1.00000                              
X_2      0.18828     -0.01131       1.00000                
X_3      0.23544      0.05562      -0.07749      1.00000  
X_4     -0.31710     -0.02707      -0.20435      0.41339    1.00000 
X_5      0.43603     -0.01816       0.46278      0.00981   -0.43354 

 

Estimation method 

As is well recognized, Poisson regression is one of the most effective methods for 

modeling accident occurrence. A concise presentation of the Poisson regression 

algorithm can be found in Appendix-1. When using Poisson regression, it is important 

that the Lagrange Multiplier Test for over-dispersion also be conducted. Under the 

hypothesis of the Poisson distribution, the limiting distribution of LM statistics is Chi-

Squared with one degree of freedom. If the over-dispersion is significant in the model 

either the Type I Negative Binomial or Type II Negative Binomial models should be 

used.  

• Type I Negative Binomial model assumes the following relationship between 

mean and variance:  

 E [y] = exp (X * b) = µ 

    Variance [y] = µ * (1 + a) 

• Type II Negative Binomial model assumes the following relationship between 

mean and variance:    

E [y]= exp (X * b) =µ 

Variance [y] = µ + a *µ2 
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Model estimation results 

Of the 15 models in Table 3-7 that had different combinations of independent 

variables , the best model for arterials yielded the estimation results in Table 3-8. 

 

Table 3-7 List of all models being evaluated for arterials 

Functional form 
Number 

of models 

Estimation 

method 

Y = b 0 + b1 X1 1 Poisson 

Y = b 0 + b1 X1 + b 2 Xi, i=2,…,5 4 Poisson 

Y = b 0 + b1 X1 + b 2 Xi  + b3 Xj, i=2,…,4, j=2,…,5, i<j 5 Poisson 

Y = b 0 + b1 X1 + b2 Xi   + b 3 Xj   + b4 Xk, i=2,3, j=2,3,4,                                     
k=2,…,5, i<j<k  

4 Poisson 

Y = b 0 + b1 X1 + b 2 X2  + b3 X3  + b4 X4  + b5 X5 1 Poisson 

Total 15  

 

Table 3-8 Estimation results of the best arterial model with Poisson regression  

Parameter           Estimate      t-statistic       P-value 

C                 2.960    11.891      [.000] 

x1 (Volume per lane)    .160         8.198        [.000] 

x2 (Median Indicator)    .152         1.702       [.089] 

x3 (Intersection density)   .021         9.543        [.000] 

x4 (Link length)     -.217        -3.361       [.001] 

x5 (Number of thru lanes)   .354         9.310        [.000] 

Over-dispersion test result 

 Chi-Squared statistics P-value 

1.097       [.295] 
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The estimation results shown in Table 3-8 illustrate the following conclusions for 

arterials: 

• Accident frequency on arterials increases with the congestion level. 

• The coefficient of the median indicator is positive and significant, which 

suggests that divided roadway links usually exhibit higher accident 

frequencies than undivided roadway links at the same volume levels. This 

may be attributed to relatively high speeds on the divided roadway links or 

limitations of the selected sample datasets. 

• Accident frequency on arterials increases with intersection density (number of 

intersections per unit length of the roadway link). 

• Arterials with a high number of through lanes are more likely to have a higher 

frequency of accidents. 

To assess the potential impact of data aggregation on the estimation results, in this 

study Poisson regression was performed with the original dataset. In addition, since the 

last two explanatory variables has high correlation with median type and intersection 

density, only the first three explanatory variables are included in the new estimation with 

the original dataset. The estimated results are presented in Table 3-9, where the 

parameters for volume per lane, median, and intersection density are significant and have 

the same sign as the results using the aggregated database.  
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Table 3-9 Estimation results with Poisson regression for the original arterial links 
 

Parameter       Estimate     t-statistic    P-value 

      C                 4.02932         34.9559        [.000] 

      VOLUME        .126751          6.71211       [.000] 

      MEDIAN          .547611          5.01301       [.000] 

      INTDENSITY    .028548          9.23268       [.000] 

Over-dispersion test result 

 Chi-Squared statistics P-value 

5.88179             [.015] 

Stability test results  

Number of coefficients: K = 4 

Number of observations in subset-1: n1 = 670 

Number of observations in subset-2: n2 = 696 

Residual sum of squares (scaled by 104): 

119047128;64050659;184695539 2
2

2
1

2 === ∑∑∑ eeep  

The resulting F statistics is 2.96 < F 0.99(4, 1358) = 3.34 

 

Since the results on Table 3-9 illustrate the existence of over-dispersion, the Negative 

Binomial model was estimated and the results (NB2 model) are illustrated in Table 3-10. 

The estimated relationship between accident frequency and its primary explanatory 

variables, including volume, median, and intersection density, appeared to be consistent 

regardless of the differences among the datasets or the estimation algorithm used (see 

Tables 3-9 and 3-10). 
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Table 3-10 Estimation results with NB2 regression for the original arterial links 
 

Parameter       Estimate     t-statistic    P-value 

      C               3.27443   17.8700       [.000] 

      VOLUME       .190534  5.44034       [.000] 

      MEDIAN        .816652        6.21659       [.000] 

      INTDENSITY  .054366        7.56145       [.000] 

      ALPHA          5.86524        24.7020       [.000] 

 

To ensure that the estimated parameter signs are independent of the difference in the 

sample size, a parameter stability test was performed (refer to Appendix-2 for details). 

The test results (see Table 3-9) indicated that the reported relationship between accident 

frequency and its key factors are stable and will not vary with the available sample size.  

 

3.5 Model Estimation for the Freeway Segment Dataset 

 

Using the same estimation algorithm, this section explores the relationship between 

accident frequency and congestion level on freeways. The variables to be included in our 

model are listed below: 

• The dependent variable: the accident frequency during peak or off-peak periods. 

• The independent variables: 

q x1 : Volume per lane 

q x2 : Median width 

q x3 : Auxiliary lane ratio 

q x4 : Link length  

q x5 : Number of through lanes 

 

The model estimation results are listed in Table 3-11, and all models were estimated 

using Poisson regression. The estimation results of the most consistent mo del are listed in 

Table 3-12. 

link  theof length the
linka  on lanesauxiliary  of length  totalthe

  ratio laneAuxiliary =
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Table 3-11 List of all models being evaluated for freeways 

Functional form 
Number 

of models 

Estimation 

method 

Y = b 0 + b1 X1 1 Poisson 

Y = b 0 + b1 X1 + b 2 Xi, i=2,…,5 4 Poisson 

Y = b 0 + b1 X1 + b 2 Xi  + b3 Xj, i=2,…,4, j=2,…,5, i<j 5 Poisson 

Y = b 0 + b1 X1 + b2 Xi   + b 3 Xj   + b4 Xk, i=2,3, j=2,3,4,                                     
k=2,…,5, i<j<k  

4 Poisson 

Y = b 0 + b1 X1 + b 2 X2  + b3 X3  + b4 X4  + b5 X5 1 Poisson 

Total 15  

 

Table 3-12 Estimation results for freeways with Poisson regression      

Parameter                      Estimate      t -statistic       P-value 

C                1.420         7.256   [.000] 

x1 (volume per lane)          .957E-03     9.107     [.000] 

x2 (median width)          -.2246E-02   -2.062    [.039] 

x3 (auxiliary lane ratio)          .126         1.501     [.133] 

x5 (number of thru lanes)       .058         3.133    [.002] 

Over-dispersion test result 

 Chi-Squared statistics P-value 

.105                   [.746] 

 

The over-dispersion test statistic is significant for this Poisson model, and requires 

additional analysis using the Negative Binomial regression. Tables 3-13 and 3-14 present 

the estimation results using NB1 and NB2 models. It was observed that the relationship 

between accident frequency and volumes per lane, median width, and the number of 

through lanes are all consistent regardless of the differences in the estimation algorithm 

(see Tables 3-12, 3-13, and 3-14). It is important to note that the parameters of variables 

observed also exhibited significant statistical stability as evidenced in the results of model 

stability test (see Table 3-14). 
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Table 3-13 Estimation results for freeways with NB1 regression 

   Parameter                      Estimate      t -statistic       P-value 

C                   1.779         9.479        [.000] 

x1 (volume per lane)          .748E-03     8.819        [.000] 

x2 (median width)              -.298E-02        -3.845       [.000] 

x3 (auxiliary lane ratio)      .059           .938        [.348] 

x5 (number of thru lanes)   .052         2.760        [.006] 

a                   10.848            10.691         [.000] 

 

Table 3-14 Estimation results for freeways with NB2 regression 

Parameter                      Estimate      t -statistic       P-value 

C                  1.176            5.068        [.000] 

x1 (volume per lane)    .104E-02       9.694        [.000] 

x2 (median width)    -.147E-02     -1.977       [.048] 

x3 (auxiliary lane ratio)     .170               1.946         [.052] 

x5 (number of thru lanes)   .070               2.837        [.005] 

a             .576               12.053          [.000] 

Stability test results 

Number of coefficients: K = 4 

Number of observations in subset-1: n1 = 181 

Number of observations in subset-2: n2 = 177 

Residual sum of squares (scaled by 108):  

                52745;43981;98110 2
2

2
1

2 === ∑∑∑ eeep  

The resulting F statistics is 1.25 < F 0.95(5, 348) = 2.21 

Therefore, the NB2 model is stable 
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Based on the above stable significant results, the following can be concluded for 

freeways:  

• Accident frequency on freeways tends to increase along with an increase in 

the congestion level. 

• Wider medians can significantly reduce accident frequency on freeways. 

• Accident frequency on freeways increases along with an increase auxiliary 

lane ratio, which is associated with potential lane-changing movements.  

• Accident frequency on freeways increases along with an increase the number 

of through lanes.  

 

3.6 Summary and Conclusions  

This chapter investigated the relationship between accident frequency and congestion 

levels on sampled freeways and arterials, and includes exploratory analyses and 

multivariate statistical estimation using Poisson and Negative Binomial regressions. The 

research results were found to be consistent with previous assumptions, which are 

summarized below. 

• Accident frequency on both freeways and arterials tends to increase with an 

increase in the congestion level. 

• Divided arterial links exhibit higher accident frequencies compared to 

undivided arterial links at the same volume levels.  

• Accident frequency on arterials increases along with the increase in 

intersection density (number of intersections per unit length of the arterial 

link). 

• Wider medians can significantly reduce accident frequency on freeway links. 

• Accident frequency on freeways increases with auxiliary lane ratio (the ratio 

of total length of auxiliary lanes on a link to its link length). 

• Accident frequency increases with the increase in the number of through lanes 

for both freeway and arterial links.  
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CHAPTER 4  

ACCIDENT RATE AND CONGESTION LEVEL 

 

4.1 Introduction 

 

This Chapter presents the research results for the analysis of the relationship between 

accident rate and congestion on both sample freeways and arterials.  Included in this 

chapter is an exploratory analysis of accident rate during peak and off-peak hours and the 

potential factors that may contribute to changes in the accident rate under various traffic 

conditions. Overall, the primary focus of this chapter is to determine if a systematic 

pattern between accident rate and congestion on either freeways or arterials exists.  

To begin, an exploratory analysis comparing the average accident rate between peak 

and off-peak periods was performed. It is expected that the peak hour accident rate will 

be generally lower than the average accident rate during the off-peak period if a negative 

correlation between the accident rate and congestion level exists. The comparison results, 

based on the data from five freeways and five local arterials, are presented in Section 4.3.  

In addition, the exploratory analysis includes a comparison of accident rate among 

sampled roadway segments experiencing different levels of congestion, and a bivariate 

correlation analysis between the accident rate and congestion levels. These analyses were 

performed to examine if highways with higher levels of congestion yield a lower accident 

rate.  

Based on the findings of exploratory analyses, this study further investigated the 

target relationship between accident rate and congestion under the comp ound impacts of 

various contributing factors using Poisson and Negative Binomial regressions. The 

estimation results for freeways and arterials are presented in Section 4.4 and 4.5.  

 

4.2 Data Set Available for Analysis 

 

The acciden t data set used in this chapter is the same set of data used to examine 

accident frequency analysis, and includes the same link aggregations and the same 



- 37 - 

surrogate variable for congestion. In the remaining sections and presentations the 

accident rate is defined as follows: 

 

 Accident rate  = 

 

    

4.3 Exploratory Analyses  

 

The following exploratory analysis intends to investigate whether the accident rate 

decreases with the congestion level from three different perspectives, which include: 

• A comparison between peak-hour and off-peak-hour accident rates, to determine 

if congestion has an impact on the resulting accident rate. As reported in the 

previous chapter, congestion on freeways and arterials exhibits a positive 

correlation with accident frequency, however the relationship with accident rate 

will be tested in this chapter. 

• A cross-section comparison of accident rates on five sample local arterials and 

freeway segments was performed to evaluate whether roadways with higher levels 

of congestion yield lower accident rates.  

• Testing the potential correlation between accident rate and volumes per lane, 

which is used as the surrogate variable for congestion level. 

The results of above three exploratory analyses are presented in sequence below. 

 

Comparison of accident rate in peak hours and in off-peak hours  

Figure 4-1 presents the differences between peak and off-peak hour accident rates on 

five sample arterials, and Figure 4-2 illustrates the results for five sample freeway 

segments. On 75 of the 129 arterial links shown in Figure 4-1, accident rates during off-

peak hours are higher than accident rates during peak hours. On the remaining links, 

accident rates during off-peak hours are equal to or lower than accident rates during peak 

hours. On more congested links (e.g. links 4-10 of MD335), accident rates during peak 

hours are significantly higher than accident rates during off-peak hours.  

Number of accidents on a link 
AADT × The length of the link 
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In comparison, it was also observed on 85 of the 179 freeway links, that the accident 

rates during off-peak hours were higher than accident rates during peak hours. On the 

remaining links, accident rates during off-peak hours were equal to or lower than accident 

rates during peak hours. For example, on 13 of the first 21 links of I-270 and on 28 of the 

39 links of I-695, the accident rate during peak hours is higher than the accident rate 

during off-peak hours.  

These two observations imply that critical factors other than congestion may have a 

significant impact on the accident rate and that the volume per lane may not be sufficient 

to fully capture the impact of congestion  on accident rate. It is also likely that the 

relationship between accident rate and volume per lane may vary with volume level. For 

example, the relationship may differ from peak to off-peak hours on either freeways or 

arterials. In summary, the results of this analysis offer no definitive answer to the 

relationship between accident rate and congestion; however, it does establish the basis for 

further explorations in the ensuing sections.  
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Figure 4 -1  A comparison of accident rate on five arterials during peak and off-
peak hours 
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Figure 4 -2 A comparison of hourly accidents on freeways during peak and off-
peak hours 
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To further compare the peak-period accident rate with the off-peak accident rate for 

all sample freeways and arterials, this study has employed the following test (Greene, 

2000) on the available dataset and the results are shown in Table 4-1. 

 

Table 4-1 Procedures and results of the dummy variable method (Greene, 2000) 

Hypothesis  
H1: Accident rate (peak) > Accident rate (off-peak) 

i.e. H0: d = 0; H1: d > 0 

Test procedures 
ii Dumy εδµ ++= *  

Set Dum  = 1, if the sample is in peak period  
  =          0, otherwise 

Data used 
Accident rate during peak hours (7-9AM and 4-6PM) 

Accident rate during off-peak hours 

Test results of five sample surface streets  

Route Name MD2 MD355 US1 MD410 MD97 

Sample Size (n ) 32 25 29 18 25 

T-statistic of  
Dum coefficient -1.750 0.745 0.396 0.203 -1.166 

T2n-2 (0.95) 1.669 1.676 1.672 1.688 1.676 

Conclusion Accept H0 Accept H0 Accept H0 Accept H0 Accept H0 

 

With respect to all five sampled arterials, Table 4-1 illustrates that it cannot be 

concluded that the average accident rate during the peak period is higher than the 

accident rate during the off-peak period. The same conclusions for freeways can be 

reached based on the test results reported in Table 4-2. For example, negative parameters 

for I-695 tend to indicate that the average accident rate during peak hours is lower than 

the average accident rate during off-peak hours. 
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Table 4-2 Results of the dummy variable test for freeways 

Test results of five sample freeway segments  

Route Name I-495 I-695 I-95 I-270 US50 

Sample Size (n ) 18 39 59 49 14 

T-statistic of  
Dum coefficient 0.071 -2.427 0.854 -0.778 0.286 

T2n-2 (0.95) 1.669 1.665 1.658 1.661 1.701 

Conclusion Accept H0 Accept H0 Accept H0 Accept H0 Accept H0 

 

In summary, the inconclusive results illustrated in Table 4-2 indicate that additional 

factors need to be considered when exploring the complex interactions between accident 

rate and congestion. 

 

Cross-section comparison of the accident rate 

As stated previously, the following analyses were designed to test whether more 

congested highways experience lower accident rate and whether a systematic relationship 

between accident rate and congestion exists. Since all five freeways and arterials 

experienced different levels of congestion, one may expect that they should exhibit 

significantly different average accident rates. 

Table 4-3 summarizes the results of ANOVA tests for the sampled arterials and 

freeways. As expected, the accident rate varies significantly among the five arterials with 

different volumes per lane during peak and off-peak periods. With respect to freeways, 

the test results indicate that a distinct difference during peak-hour accident rate among 

five sample freeways exists. However, the test also indicates that the off-peak accident 

rate does not vary significantly among the sampled freeways. 
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Table 4-3 ANOVA tests and results 

Balanced ANOVA test for arterials  

Hypothesis  The average accident rates for all five arterials are statistically equal. 

ANOVA test 

parameters 

The number of factor levels (treatment groups): k = 5  

The number of observations within each factor level: n = 18 

Data used 
Accident rate in peak hours (7-9AM and 4-6PM) 

Accident rate in off peak hours 

Test results from the arterial dataset 

 Dependent Variable Y F 975.0
85,4F  Conclusion  

1 Peak-hour accident rate 3.06 2.48 Reject 

2  Off-peak accident rate 5.91 2.48 Reject 

Unbalanced ANOVA test for freeways 

Hypothesis  The average accident rates for all five freeways are statistically equal. 

ANOVA test 

parameters 

The number of factor levels (treatment groups): k = 5  

The number of observations within each factor level:  

ni = {18, 39, 59, 49, 14} 

Data used 
Accident rate during peak hours (7-9AM and 4-6PM) 

Accident rate during off peak hours 

Test results from the freeway dataset 

 Dependent Variable Y F 
975.0

85,4F  Conclusion 

1 Peak-hour accident rate 4.11  2.42 Reject 

2 Off-peak accidents rate 0.93  2.42 Accept 

 

 

 

 

 

 

 

 



- 44 - 

Bivariate correlation test between the accident rate and congestion level  

Figures 4-3 and 4-4 present the relationship between volume per lane and the 

resulting accident rate on each link for the sample freeways and arterials. These graphical 

relationships reveal two important factors: 

♦ The accident rate does not exhibit any distinct trend with volumes per 

lane.  

♦ Increasing the variance of the exhibited data patterns does not support the 

use of linear multivariate regression for further analyses. 

Based on this information, the use of Poisson and Negative Binomial regressions for 

accident rate analysis should be examined, as these statistical models are more accurate 

when there is a better account for the non -linear and non-negative nature of accident rate 

data.  
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Figure 4 -3 A graphical illustration of accident rate versus corresponding volume 
for arterials  
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Figure 4 -4 A graphical illustration of accident rate versus corresponding volume 
for freeways 
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4.4 Model estimation for arterials 

 

There are a variety of factors that may contribute to the variation of the accident rate. 

The previous exploratory an alysis using a single factor may not be sufficient to render an 

“unbiased” picture of the relationship between the accident rate and congestion level. 

Therefore, this section attempts to further investigate any potential relationships using 

multivariate statistical methods, including Poisson and Negative Binomial regressions. 

The set of variables to be included in the model estimation are listed below: 

• The dependent variable: the accident rate in peak or off-peak hours. 

• The set of independent variables: 

q x1: Annual average volume per hour during peak and off-peak periods 

q x2: Median type (divided or not) 

q x3: Intersection density = Number of intersections / Link length 

q x4: Link length 

q x5: Number of through lanes per link  

The correlation matrix of the independent variable (see Table 4-4) makes it clear that 

the number of intersections and the length of roadway links are highly correlated (the 

correlation coefficient is 0.414). The analysis uses the intersection density (i.e., the 

number of intersections divided by the link length) as one of the explanatory variables in 

the model estimation. There is also a high correlation between the number of through 

lanes and median type or section length. These correlations come from the design 

properties and the link-clustering operations. For example, divided-median roadway links 

are usually associated with a higher number of through lanes than undivided -median 

roadway links, which explains the positive correlation between these two variables.  
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Table 4-4 Correlation matrix for candidate variables 

Y Accident rate 

x_1 Volume per lane 

x_2 Divided median or not 

x_3 Number of intersections 

x_4 Length of the roadway link  

x_5 Number of through lanes 

                               Correlation Matrix 
 
             Y           X_1           X_2           X_3           X_4  
Y         1.00000                                            
X_1      -0.08589      1.000000                              
X_2       0.26387     -0.011310       1.00000                
X_3       0.16687      0.055620      -0.07749       1.00000  
X_4      -0.38058     -0.027073      -0.20435       0.41339     1.00000 
X_5       0.57783     -0.018155       0.46278       0.00981    -0.43354 

 

 

Estimation method 

The Poisson regression is recognized as one of the most effective methods for 

examining accident related data. A concise presentation of the Poisson regression 

algorithm can be found in Appendix-1. When using Poisson regression, it is important 

that the Lagrange Multiplier Test for over-dispersion also be conducted. If the over-

dispersion is found to be significant in the estimated results, it is suggested in the 

literature that Type-I Negative Binomial model or Type-II Negative Binomial model 

should be used. The fundamental assumptions for Type-I and Type-II Negative Binomial 

models are summarized below: 

• Type I Negative Binomial model assumes the following relationship between 

mean and variance:  E[y] = exp (X * b) = µ 

Variance [y] = µ * (1 + a) 

• Type II Negative Binomial model assumes the following relationship between 

mean and variance:   E[y]= exp (X * b) =µ 

Variance [y] = µ + a *µ2 

 

 



- 49 - 

Model estimation results 

A total of 15 model specifications were estimated with Poisson regression (see Table 

4-5). Among those, the specification shown in Table 4-6 best illustrates the relationship 

between accident rate and congestion. 

 

Table 4-5 List of estimated models  

Functional form Number 
of models 

Estimation 
method  

Y = b 0 + b1 X1 1 Poisson 

Y = b 0 + b1 X1 + b 2 Xi, i=2,…,5 4 Poisson 

Y = b 0 + b1 X1 + b 2 Xi  + b3 Xj, i=2,…,4, j=2,…,5, i<j 5 Poisson 

Y = b 0 + b1 X1 + b2 Xi   + b 3 Xj   + b4 Xk, i=2,3, j=2,3,4,                                     
k=2,…,5, i<j<k  

4 Poisson 

Y = b 0 + b1 X1 + b 2 X2  + b3 X3  + b4 X4  + b5 X5 1 Poisson 

Total 15  

 

Table 4-6 Model estimation results for arterials  

Parameter                   Estimate      t-statistic     P-value 

C                 7.268         35.844       [.000] 

x1 (Volume per lane)     -.048       -2.438       [.015] 

x2 (Median Indicator)     .139         1.733        [.083] 

x3 (Intersection density)    .020         6.995        [.000] 

x4 (Link length)      -.225        -4.274       [.000] 

x5 (Number of thru lanes)   .325         10.321       [.000] 

Over-dispersion test result 

 Chi-Squared statistics P-value 

0.348                       [.555] 
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From the estimation results listed in Table 4-6, the following conclusions were 

reached: 

• The accident rate for local arterials tends to decrease with the volume level. 

• The coefficient of the median indicator is positive and significant, which 

suggests that divided roadway links exhibit higher accident rates than 

undivided roadway links with the same volume levels. This may be due to the 

higher speed on the divided roadway links or other factors that have not been 

identified. 

• The accident rate increases with intersection density (number of intersections 

per unit length of the roadway link). 

• The accident rate on arterial links increases with the number of through lanes. 

More through lanes indicate that potential lane-changing maneuvers on the 

roadway link may contribute to an increase in the accident frequency and rate 

at the same volume levels. 

To eliminate the potential biases due to the link partitioning process, this study also 

used the original (not clustered) link dataset to perform the model estimation. Estimation 

results of the Poisson regression model with the original (not aggregated) dataset (1366 

links in total) are listed in Table 4-7, note that the volume per lane is a significant 

variable and has a negative coefficient. The divided median has a significant positive 

coefficient, which implies that the accident rate tends to be higher on a divided roadway 

link than on an undivided roadway link. 
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Table 4-7 Poisson model for the original arterial links  

Parameter                      Estimate     t -statistic       P-value 

C                                      4.61215       36.7155       [.000] 

VOLUME                        -.085300      -3.37066      [.001] 

MEDIAN                          .327695       2.96343       [.003] 

INTDENSITY                  .027944       8.52762       [.000] 

Over-dispersion test result 

 Chi-Squared statistics P-value 

.502             [.478] 

Stability test results 

Number of coefficients: K = 4 

Number of observations in subset-1: n1 = 670 

Number of observations in subset-2: n2 = 696 

Residual sum of squares (scaled by 1010):  

             43787362;38229845;82181205 2
2

2
1

2 === ∑∑∑ eeep  

The resulting F statistics is 0.68 < F 0.95(4,1358) = 2.37 

Therefore, the Poisson model is stable 

 

Since the over-dispersion test statistics are not significant for the previous models 

(see Table 4-7), it is not necessary to perform the Negative Binomial model estimation. 

To ensure that all estimated parameter signs are independent of the difference in 

sample size, a standard parameter stability test was also performed. The primary 

procedures are summarized in Appendix-2, and test results (see Table 4-7) clearly 

indicate that the estimated relationship between accident rate and key factors is stable, 

and will not vary with sample size. If the same analysis is conducted using a larger 

dataset the results conclusion should be identical to those reported in this section.  
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4.5 Model estimation for freeway segments 

 

Using the same estimation algorithm, this section explores the relationship between 

the accident rate and the congestion level on freeways.  Variables to be included in the 

model estimation are as follows: 

• The dependent variable (Y): the accident rate during peak or off-peak hours. 

• The set of independent variables: 

q x1 : Volume per lane 

q x2 : Median width  

q x3 : Auxiliary lane ratio  

q x4 : Link length 

q x5 : Number of through lanes  

 

Estimation results 

A total of 15 model specifications with different variables were tested using Poisson 

regression (see Table 4-8). 

 

Table 4-8 List of estimated models  

Functional form Number 
of models 

Estimation 
method  

Y = b 0 + b1 X1 1 Poisson 

Y = b 0 + b1 X1 + b 2 Xi, i=2,…,5 4 Poisson 

Y = b 0 + b1 X1 + b 2 Xi  + b3 Xj, i=2,…,4, j=2,…,5, i<j 5 Poisson 

Y = b 0 + b1 X1 + b2 Xi   + b 3 Xj   + b4 Xk, i=2,3, j=2,3,4,                                     
k=2,…,5, i<j<k  

4 Poisson 

Y = b 0 + b1 X1 + b 2 X2  + b3 X3  + b4 X4  + b5 X5 1 Poisson 

Total 15  

 

link  theof length the
linka  on lanesauxiliary  of length  totalthe  ratio laneAuxiliary =
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With both peak hour data and off-peak hour data, the most consistent estimation 

results from these Poisson models are listed in Table 4-9. Note that for volume per lane 

the variable was not significant but did have a positive coefficient. 

 

 Table 4-9 Estimation results with Poisson regression for freeways 

Parameter                Estimate          t-statistic       P-value 

C                                5.81252           28.0219       [.000] 

x1 (volume per lane)           .1140E-03       1.08253         [.279] 

x2 (median width)              -.1358E-02      -1.40470        [.160] 

x3 (auxiliary lane ratio)        .142474          1.87529        [.061] 

x5 (# of thru lanes)               -.064002         -3.12061       [.002] 

Over-dispersion test result 

 Chi-Squared statistics P-value 

.167                   [.683] 

 

To further investigate the impact volume per lane has on the accident rate, this study 

divided the freeway dataset into peak and off-peak subsets, and estimated each 

independently using Poisson regression. Table 4-10 and Table 4-11 present the most 

consistent estimation results of the Poisson models from these two subsets. Note that 

although the parameter for volume per lane remains insignificant in both models, the 

statistical significance level indicates that the impact of peak hour volume on the accident 

rate should be examined further.   
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Table 4-10 Estimation results with Poisson regression  for the peak-hour freeway 
dataset  

Parameter                Estimate      t -statistic       P-value 

C               5.49095        16.0450       [.000] 

x1 (volume per lane)         .29446E-03    1.56221       [.118] 

x2 (median width)             -.25313E-02   -1.78660      [.074] 

x3 (auxiliary lane ratio)      .182054        1.66505       [.096] 

x5 (# of thru lanes)             -.057942       -2.25588      [.024] 

Over-dispersion test result 

 Chi-Squared statistics P-value 

.131                   [.718]  

 

 
Table 4-11 Estimation results with Poisson regression  for the off-peak-hour freeway 
dataset  

Parameter                Estimate      t -statistic       P-value 

C               5.74487       14.7920       [.000] 

x1 (volume per lane)         .026450       .858914       [.390] 

x2 (median width)            -.5371E-03   -.401647      [.688] 

x3 (auxiliary lane ratio)     .084449       .783483       [.433] 

x5 (# of thru lanes)            -.064892      -1.95222      [.051]  

Over-dispersion test result 

 Chi-Squared statistics P-value 

.006                   [.940]  

 

The results also show that the t-statistic of volume per lane in Table 4-10 is 1.56 and 

is close to the significance boundary. In addition, the mean and variance of accident rate 

(scaled by 105) are 24.9 and 428.18 (a ratio of 0.058), which suggests the need to use the 

Negative Binomial regression models.  

In Table 4-12 the estimation results with NB1 regression were based on the off-peak 

data. The variable of volume per lane remained insignificant. However, it is important to 
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note that the volume per lane that represents the congestion level exhibits a significant 

sign when the NB1 model is estimated with the peak-hour dataset (see Table 4-13).  

 

Table 4-12 Estimation results with NB1 for the off-peak-hour freeway dataset 

Parameter                Estimate      t -statistic       P-value 

C               3.27640        11.1825       [.000] 

x1 (volume per lane)       .028692        1.16502       [.244] 

x2 (median width)           -.9382E-03   -1.14488      [.252] 

x3 (auxiliary lane ratio)     .066380        .783986       [.433] 

x5 (# of thru lanes)        -.040057       -1.50911      [.131] 

a            12.0517        8.11631       [.000] 

 

Table 4-13   Estimation results with NB1 for the peak-hour freeway dataset 

Parameter                Estimate      t -statistic       P-value 

C                           3.01253           9.11135         [.000] 

x1 (volume per lane)     .037621            2.31598        [.021] 

x2 (median width)           -.442367E-02  -3.41930        [.001] 

x3 (auxiliary lane ratio)   .062311         .648298         [.517] 

x5 (# of thru lanes)      -.031555          -1.08130        [.280]  

a                          16.3193         7.62379         [.000] 

 

Table 4-13 summarizes the estimation results for the NB1 model based on the peak-

hour freeway accident data where both the volume per lane and the median width had 

significant impacts on the accident rate. In contrast, none of these candidate variables in 

the off-peak model revealed any significant signs. Therefore, the following tentative 

conclusions regarding the relationship between accident rate and congestion can be 

reached: 

• Accident rate on freeways seems to increase with traffic volume during peak 

hours. 

• Wider medians can significantly reduce the accident rate on freeways. 
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• Accident rate on freeways during off-peak hours tends to be independent of 

traffic volume levels. 

As shown in Tab le 4-13 (NB1 model), the relationship was evaluated using the 

stability test. The stability test results indicate that the reported relationship between 

accident rate and key factors is stable and does not vary with sample size.  

 

4.6 Summary and Conclusions  

 

Chapter 4 attempted to explore the relationship between accident rate and congestion 

level on sampled freeways and arterials. The investigation of this relationship includes 

exploratory analyses and multivariate model developmen t using the Poisson and Negative 

Binomial regressions.  The results indicate the following: 

• For arterials, the accident rate tends to decrease as the volume increases.  

• For freeway segments, the accident rate during off-peak hours appears to be 

quite random, exhibiting no systematic relation with the traffic volume.  

• During the peak-congested period, accident rates on freeways appear to 

increase significantly with traffic volume. 

• Divided arterial links generally exhibit higher accident rates than undivided 

arterial links at the same volume level.  

• Wider medians on freeways can significantly reduce the accident rate. 

• The accident rate on arterials is likely to increase with intersection density. 

• An increase in the number of through lanes may cause a significant increase in 

the accident rate on arterials. 
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CHAPTER 5 
ACCIDENT SEVERITY AND CONGESTION LEVEL 

 
 

5.1 Introduction 

 

This chapter examines the relationship between accident severity and congestion 

level. The focus of this chapter is to examine the common belief of many traffic safety 

professionals that accident severity on freeways or arterials decreases with congestion 

because of the high traffic volumes and reduced flow speed. 

An exploratory analysis was conducted to identify potential factors associated with 

accident severity such as accident location, roadway geometry, and driver conditions. 

This was followed by an aggregated analysis of the relationship between the number of 

accidents in each severity level and congestion level on sample freeways and arterials. 

Based on the results of the exploratory analysis, a final examination using the Ordered 

Probit models was conducted to estimate the relationship between accident severity and 

the identified key variables. It was anticipated that hourly volume per lane, the surrogate 

variable for the congestion level, would have a negative coefficient in the estimation 

results if more accidents occurred during periods with higher congestion levels. 

Chapter 5 provides a description of the sample data and the severity classifications in 

Section 5.2 and 5.3. Section 5.4 presents the exploratory analysis results for the arterial 

and freeway databases. Section 5.5 provides the aggregated analysis results illustrating 

the relationship between accident severity and congestion levels. Applications of the 

multivariate model for estimating the relationship between accident severity and all 

associated factors, along with the research results, are presented in the last two sections. 

 

5.2 Data Available for Analysis 

 

The accident information records from the MAARS contain a comprehensive set of 

accident data for analysis, including the injury severity of the drivers/occupants, the 

number of persons injured, weather conditions, visibility condition, road surface 
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condition, collision type, and the location and the time of each accident. However, the 

traffic volume during the time of each accident is not recorded in the MAARS database. 

As described in earlier chapters, the highway information system from Maryland 

State Highway Administration provides traffic and geometric information associated with 

most arterials and freeway segments. After integrating these two databases with accident 

location information, it becomes easier to obtain the AADT and geometric information 

related to each recorded accident. 

The analyses reported in the remainder of this chapter are based on the individual 

accident data points recorded in Year 2000 for five arterials and five freeway segments 

(see Table 5-1). 

 

Table 5-1 Accident dataset for analysis  

 4542 accident data from the surface 
street dataset 

5402 accident data from the freeway 
segment dataset 

Sample 
Year 2000 2000 

Source 
Index 

Road 
name Segment location Road 

name Segment location  

1 US1 Between Baltimore City Line 
and Washington DC Line I-495 Between Virginia State Line and 

I-95 Exit 27 

2 MD2 The entire length  I-270 The entire length 

3 MD97 The entire length  I-695 The entire length 

4 MD355 The entire length  I-95 Between Baltimore City Line 
and Virginia State Line 

5 MD410 The entire length  US50 Between Washington DC Line 
and Bay Bridge 

 

 

Severity classification 

 Table 5-2 presents two classifications for accident severity by the Maryland State 

Highway Administration (SHA). In analyzing the severity data, this study employed the 

five-level accident severity classification by the SHA, which includes property damage 
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only, possible injury, capacitating injury, non -capacitating injury, and fatal. Since the 

category of “possibly injured” has not been clearly defined, this study has also explored 

the impact of grouping “possibly injured,” either with “injured” or “not injured” on the 

estimated results. The models reported in later sections were estimated to determine the 

relationship between accident severity and congestion under various scenarios of data 

aggregation and classification. Also note that the probable under-reporting of property 

damage only accidents exists due to the decreasing police response to such accidents. 

 

 Table 5-2 Severity classification  

For Accidents For Drivers/Occupants/ Pedestrians 

1. Property Damage Only 

2. Injury  

3. Fatal 

 

1. Not injured (Property damage only) 

2. Possibly injured 

3. Injured (Capacitating injury) 

4. Disabled (Non-capacitating injury) 

5. Fatal 

 

 

5.3 Exploratory Analysis for the arterial database 

 

An exploratory analysis was conducted to identify variables for further econometric 

model development, and includes a comparison of accident frequency at various severity 

levels for each potential contributing factor. Based on the differences in key 

characteristics, a list of candidate exploratory variables was classified into the following 

three groups. 

• Roadway geometric and weather condition variables: 

o Median type (divided or not) 

o Number of through lanes  

o Intersection or not 

o Work zone or not 

o Weather conditions (e.g., rain, snow) 
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• Traffic condition variables: 

o Traffic composition 

o Annual Average Hourly Volume (per lane) 

• Driver condition variables: 

o Drinking alcohol or using drugs 

Preliminary comparisons of accident severity distribution, classified with the above list of 

critical variables are presented in the sequence below: 

 

Peak hours/ off-peak hours (for arterials) 

 Figure 5-1 and Table 5-3 summarize the comparison results for accident severity 

distributions between peak and off-peak hours. The accident severity distribution exhibits 

a similar pattern between peak hours and off-peak hours, where the percentage of 

accidents decreases with the severity level. 
  

Figure 5-1 The accident severity distribution in peak and off-peak periods on 
arterials 
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Table 5-3 Distribution of arterial accidents by severity in peak and off-peak periods 

Severity  Aggregated by 
Peak hour or not Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 648 217 216 85 6 1172 
Peak 

Percentage 55.3 18.5  18.4 7.3  0.5 100 

# of accidents 1850 630 562 307 21 3370 Off-
Peak Percentage 54.9 18.7  16.7 9.1  0.6 100 

 

At intersection/ not at intersection   

Similar to the previous analysis, this comparison was performed to evaluate the 

severity distribution of accidents that occurred at intersections with those at ro adway 

segments. The primary concern is to identify if the location, such as intersection, plays 

any significant role in the resulting severity the accident. Figure 5-2 and Table 5-4 

present the comparison results of the accident severity distribution between accidents that 

occurred at intersections and those that occurred at non-intersection locations.  

 
Figure 5 -2 A comparison of the severity distribution of accidents that occurred at 
intersections and non-intersection locations 
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Table 5-4 Distribution of accidents by severity at intersections or non-intersection 
locations  

Severity  Aggregated by 
At-intersection or not Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 802 275 295 164 8 1544 At 

Intersection Percentage 51.9 17.8  19.1 10.6  0.5 100 

# of accidents 1696 572 483 228 19 2998 Not at 
Intersection Percentage 56.6 19.1  16.1 7.6  0.6 100 

  

Accordingly, given that an accident already happened, the probability of having the 

accident at different levels of severity are summarized as follows: 

Property damage only  injury    fatality 

  Intersection    0.697    0.297   0.005 

  Non-intersection   0.757    0.237   0.006 

The probability of having an accident that results in “injury” at intersections is about 

0.297 and higher than the probability at non -intersection locations. This is consistent with 

the finding that accidents occurred at non-intersection locations are more likely to be at 

the level of property damage only (0.757 vs. 0.697). 

 

Weather conditions   

Figure 5-3 and Table 5-5 present the impact of weather conditions on the distribution 

of accident severity.  
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Figure 5 -3 The severity distribution of arterial accidents under various weather 
conditions 
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Table 5-5 Distribution of arterial accidents by severity under various weather 
conditions 

Severity  Aggregated by 
Weather condition Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 1964 653 627 305 23 3572 Clear/ 
Cloudy  Percentage 55.0 18.3  17.6 8.5  0.6 100 

# of accidents 14 6 6 1 0 27 
Foggy 

Percentage 51.9 22.2  22.2 3.7  0.0 100 

# of accidents 471 182 138 82 3 876 
Raining 

Percentage 53.8 20.8  15.8 9.4  0.3 100 

# of accidents 42 6 7 1 0 56 Snow/ 
Sleet Percentage  75.0  10.7  12.5 1.8  0.0 100 

    

By using the clear/cloudy condition as a base for comparison, the rain condition has 

no distinct impact on accident severity; however, the snow condition often results in more 

accidents at lower severity levels. 
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In work-zone or not (for arterials) 

Figure 5-4 and Table 5-6 illustrate the comparison results for accident distribution by 

severity in and not in work-zones. Since work-zone safety has long been a primary 

concern in traffic operations, it is essential to know if work-zone operations have an 

effect on the severity of accidents. 

 

Figure 5 -4 The distribution of arterial accidents by severity for those in work-
zones or non-work-zone locations 
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Table 5-6 Distribution of arterial accidents by severity in work-zones  or n on-work-
zone locations 

Severity  Aggregated by 
In work -zone or not Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 57 26 17 11 0 111 In  
Work-zone Percentage 51.4 23.4  15.3 9.9  0.0 100 

# of accidents 2441 821 761 381 27 4431 Not in 
Work-zone Percentage 55.1 18.5  17.2 8.6  0.6 100 

  

The preliminary statistics indicate that work-zone operations may not be a significant 

contributor to accident severity. For example, the probability that an accident will occur 

at the level of “property damage only” is 0.514 in work-zones, compared to 0.551 when 
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in non -work-zone locations. The total percentage of accidents at the first two severity 

levels is 53.8% in work-zones and 53.6% for those in non-work-zone locations. 

 

Median type   

Figure 5-5 and Table 5-7 present the distribution of accidents by severity level for 

those that occurred on divided and undivided highway segments. The analysis indicates 

that the existence of highway medians may not reduce accident frequency, but do 

contribute to the improvement of safety.  

 

Figure 5 -5 The severity distribution of arterial accidents on arterials with various 
median types  
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Table 5-7 Distribution of arterial accidents by s everity on arterials  with various 
median types  

Severity  Aggregated by 
Median type Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 946 293 264 142 14 1659 Not 
Divided Percentage 57.0 17.7  15.9 8.6  0.8 100 

# of accidents 1465 529 488 236 12 2730 
Divided 

Percentage 53.7 19.4  17.9 8.6  0.4 100 
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The statistics summarized in Table 5-7, however, do not provide a definitive answer 

regarding the impact of median type on the accident severity, which indicates the need to 

explore the compound impacts of other contributing factors. 

 

Driver conditions  

Figure 5-6 and Table 5-8 illustrate the results of a comparison of the number of 

accidents and their distributions at different severity levels under the following three 

categories of driver conditions: apparently normal, had been drinking, and other 

abnormal conditions (e.g. using drugs or having physically defects).  

 

Figure 5 -6 The severity distribution of arterial accidents for drivers under various 
conditions 
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Table 5-8 Distribution of arterial accidents by severity for drivers under various 
conditions  

Severity  Aggregated by 
Driver condition Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 1926 881 839 400 25 4071 Apparently 
Normal Percentage 47.3 21.6  20.6 9.8  0.6 100 

# of accidents 120 61 47 31 1 260 Had been 

drinking Percentage 46.2 23.5  18.1 11.9  0.4 100 

# of accidents 19 8 5 12 6 50 Other 
abnormal Percentage 38.0 16.0  10.0 24.0  12.0 100 

 

Based on above statistics, one may reach a tentative conclusion that drivers are more 

likely to experience severe accidents if they are under the influence of alcohol or are 

affected by other abnormal variables (e.g. drugs, physical defects). 

 

Similar exploratory analyses were conducted using visibility condition (daylight, 

dawn/dusk, dark-lights on, dark- no lights), the number of through lanes, and collision 

type (head on, rear end, sideswipe, etc.), as exploratory variables.  However, the 

preliminary results indicated that none of these factors exhibited a significant impact on 

accident severity.  Therefore, the following factors were included in the estimation of the 

relationship between congestion and accident severity on arterials: 

• Median type (divided or not) 

• At an intersection or not 

• In a work zone or not 

• Weather conditions (Snow/Sleet and Fog) 
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5.4 Exploratory Analysis for the freeway database 

 

A preliminary set of variables for analysis are summarized below:  

• Roadway geometric and weather condition variables: 

o Number of through lanes  

o Work zone or not 

o Auxiliary lane ratio 

   

o Weather (rain, snow, or other conditions) 

• Traffic condition variables: 

o AADT, and Peak-hour volume 

o Annual Average Hourly Volume (per lane) 

• Driver condition variables: 

o Drinking alcohol or using drugs 

 

Peak hours/ off-peak hours (for freeways) 

 Table 5-9 summarizes the distribution of accidents by severity during peak and off-

peak hours. The severity distribution patterns for peak and off-peak periods exhibit no 

significant differences for selected freeways. 
 

Table 5-9 Distribution of freeway accidents by severity in peak and off-peak periods  

Severity  Aggregated by 
Peak hour or not Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 897 283 203 117 6 1506 
Peak 

Percentage 59.6 18.8  13.5 7.8  0.4 100 

# of accidents 2264 654 595 353 30 3896 Off-
Peak Percentage 58.1 16.8  15.3 9.1  0.8 100 

 

 

link  theoflength  the
link aon  lanesauxiliary  oflength   totalthe  ratio laneAuxiliary =
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Weather conditions   

A preliminary exploration of potential weather impacts on the severity of accidents is 

presented in Table 5-10. Based on the results reported in the statistical summary, snow 

conditions tend to cause less severe accidents despite the fact that it is likely that during 

these conditions more accidents occur.  For example, an accident that occurs on a day 

when it is snowing has a 0.738 probability to reach Level-1 severity (property damage 

only). 

 

Table 5-10 Distribution of freeway accidents by severity under various weather 
conditions 

Severity  Aggregated by 
Weather condition Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 2559 768 660 397 34 4418 Clear/ 
Cloudy  Percentage 57.9 17.4 14.7 9.0 0.8 100 

# of accidents 16 3 6 3 0 38 
Foggy 

Percentage 57.1 10.7 21.4 10.7 0.0 100 

# of accidents 472 148 121 61 1 803 
Raining 

Percentage 58.8 18.4 15.1 7.6 0.1 100 

# of accidents 96 14 11 9 0 130 Snow/ 
Sleet Percentage 73.8 10.8 8.5 6.9 0.0 100 

 

 

In work-zone or not in work -zone   

Table 5-11 summarizes the differences between accident distribution by severity for 

accidents that occurred in work-zones and on normal freeway segments. The preliminary 

statistics reported tend to offer no definitive conclusion regarding the potential impacts of 

work-zone on accident severity. 
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Table 5-11 Distribution of freeway accidents by severity within and beyond work-
zones  

Severity  Aggregated by 
In work -zone or not Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 68 22 19 18 0 127 In  
Work-zone Percentage 53.5 17.3 15.0 14.2 0.0 100 

# of accidents 3093 915 779 452 36 5275 Not in 
Work-zone Percentage 58.6 17.3 14.8 8.6 0.7 100 

 

Driver conditions  

Similar to the analysis of accidents on arterials, Table 5-12 presents the distribution of 

accidents by severity and by driver condition. In the MAARS accident database, all 

drivers involved in accidents are classified in one of the following groups: normal, had 

been drinking, and other abnormal states such as using drugs. The distinct differences in 

the resulting severity are proven by the statistics illustrated in Table 5-12. For example, 

drivers under abnormal conditions, excluding those that “had been d rinking,” have about 

a 0.138 probability to be involved in an accident that results in fatalities (Level-5).  This 

is compared to only 0.005 of drivers who have accidents under normal conditions. 

Therefore, it is likely that driver conditions are a significant factor in the severity of 

accidents and should be included in further statistical analyses to determine the 

relationship between congestion and accident severity. 
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Table 5-12 Distribution of freeway accidents by severity and driver conditions 

Severity  Aggregated by 
Driver condition Level-1 Level-2 Level-3 Level-4 Level-5 

Total 

# of accidents 2471 989 866 400 25 4751 Apparently 
Normal Percentage 52.0 20.8 18.2 8.4 0.5 100 

# of accidents 205 49 38 34 4 330 Had been 

drinking Percentage 62.1 14.8 11.5 10.3 1.2 100 

# of accidents 46 2 5 3 9 65 Other 
abnormal Percentage 70.8 3.1  7.7 4.6  13.8 100 

    

The following factors were also examined to determine their impacts on the 

distribution of freeway accidents by severity. 

• Visibility condition (daylight, dawn/dusk, dark-lights on, dark- no lights) 

• The number of through lanes 

• The number of vehicles involved 

• Collision type (head on, rear end, sideswipe, etc.) 

The existing dataset provides no indication of the impacts these factors have on the 

accident severity distribution. Therefore, they are not included in the advanced statistical 

estimation provided in Section 5.6 and 5.7. 

 

5.5 Relationships between AADT and accident severity 

 

This section analyzes the aggregated relationship between AADT and accident 

severity, to evaluate whether the percentage of severe accidents reveals a decreasing 

trend with the level of congestion (represented with the volume per lane), if more 

congested traffic conditions will result in less severe accidents as expected. Figures 5-7 

and 5-8 present accident distribution by severity under different AADT levels on local 

arterials and freeways. 
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Figure 5 -7 Percentage of accidents at each severity level vs. AADT per lane from 
the local arterial dataset  

Figure 5 -8 Percentage of accidents at each severity level vs. AADT per lane from 
the freeway segment dataset  
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The statistical trends illustrate that the percentage of accidents at the lowest severity 

level tend to increase with the AADT per lane on both freeways and arterials. In contrast, 

the percentage of accidents at severity levels 2-4 exhibits a decreasing trend with the 

AADT per lane. These results, despite their preliminary nature, tend to offer supporting 

evidence regarding the general perception that accidents that occur during more 

congested traffic conditions tend to be at a less severe level. 

Since Level-2 severity, “possible injuries”, is not rigorously defined, the following 

multivariate statistical estimation was used to explore the effectiveness of reclassifying 

the severity level with different data aggregations. A list of these candidate data sets after 

reclassification is presented below: 

• Property damage only, possible injury, injury, disabled, and fatal. (5 levels) 

• Property damage only, injury, and fatal. (3 levels) 

o 1, 2+3+4, 5; 

o 1+2, 3+4, 5. 

• Injury, disabled, and fatal. (3 levels) 

o 2, 3+4, 5; 

o 2+3, 4, 5; 

o 2, 3, 4, 5. 

Sections 5.6 and 5.7 present the investigation results regarding the relationship between 

accident severity and contributing factors on both freeways and arterials using the 

previous datasets. 

 

5.6 Model Estimation for Arterials 

 

 This section presents the statistical method used to estimate the relationship between 

accident severity on arterials and primary contributing factors, especially the volume per 

lane that is used as the surrogate variable for congestion.  

The dependent variable (i.e. severity level) is discrete and inherently ordered in 

nature, therefore, the traditional discrete choice models, such as multinomial logit or 

probit models will not be sufficient to account for the embedded ordinal relationship. 

Thus, the remaining estimation uses the Ordered Probit Model (Greene, 2000) to explore 
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the relationships of interest.  Both the arterial dataset (containing 4518 individual 

accident cases) and the freeway dataset (containing 4868 individual accident cases) are 

sufficiently large for assuming that the disturbance terms are jointly normally distributed.  

 

Core concepts of the ordered probit model 

The ordered probit model is grounded on the following latent regression: 

εβ += xy '*
 

Where, y* is unobserved. What we do observe is: 

         y  = 1 if y* <= 0 

   = 2 if 0 < y* <= µ1 

   = 3 if µ1 < y* <= µ2 

   = 4 if µ2 < y* <= µ3 

    = 5 if µ3 < y* 

µ1, µ2, and µ3 are the unknown parameters to be estimated with ß 

Prob(y=1) = cnorm(0 – ß’x) – 0 

Prob(y=2) = cnorm(µ1- ß’x) - cnorm(0 – ß’x)  

Prob(y=3) = cnorm(µ2- ß’x) - cnorm(µ1- ß’x) 

Prob(y=4) = cnorm(µ3- ß’x) - cnorm(µ2- ß’x) 

Prob(y=5) = 1- cnorm(µ3- ß’x) 

For all the probabilities to be positive, we must have 

0 < µ1<µ2< µ3 

Figure 5-9 shows the implications of the structure. 
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Figure 5 -9 Cumulative probabilities in the Ordered Probit Model 
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One can construct the log-likelihood function and compute its derivatives with 

standard methods. 
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Model estimation results 

Table 5-13 summarizes the list of probit models estimated using the TSP4.5 software 

(Hall and Cummins, 1999). 

 

Table 5-13 A list of estimated severity models for arterials  

 Severity Levels 
Modeled (Y) Dataset  Independent variables 

Model-1 (1, 2, 3, 4, 5) All available data 
AADT per lane, peak-hour indicator, 

intersection indicator (X2), weather (X3), 
median type indicator (X4) 

Model-2 (1, 2, 3, 4, 5) All available data Hourly volume per lane, X2, X3, X4 

Model-3 (1, 2, 3, 4, 5) Weekday data Hourly volume per lane, X2, X3, X4 

Model-4 (1, 2+3+4, 5) All available data Hourly volume per lane, X2, X3, X4 

Model-5 (1, 2+3+4, 5) Weekday data Hourly volume per lane, X2, X3, X4 

Model-6 (1+2, 3+4, 5) All available data Hourly volume per lane, X2, X3, X4 

Model-7 (1+2, 3+4, 5) Weekday data Hourly volume per lane, X2, X3, X4 

Model-8 (2, 3, 4, 5) All available data Hourly volume per lane, X2, X3, X4 

Model-9 (2, 3, 4, 5) Weekday data Hourly volume per lane, X2, X3, X4 

Model-10 (2+3, 4, 5) All available data Hourly volume per lane, X2, X3, X4 

Model-11 (2+3, 4, 5) Weekday data Hourly volume per lane, X2, X3, X4 

Model-12 (2, 3+4, 5) All available data Hourly volume per lane, X2, X3, X4 

Model-13 (2, 3+4, 5) Weekday data Hourly volume per lane, X2, X3, X4 
 

Of the 13 types of data aggregations presented in Table 5-13, the following 4 models 

illustrate a better consistency on the relationship between severity level and the 

associated variables. 

• Model-2: All five levels  

• Model-6: 3 levels (1+2, 3+4, 5) 

• Model-8: 4 levels (2, 3, 4, 5)  

• Model-10: 3 levels (2+3, 4, 5) 
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Model-2: All five levels 

Table 5-14 presents the estimation results for Model-2, where hourly volume is not a 

significant variable. For these results, “Intersection” and “driver_other” have significant 

positive coefficients, while “weather_snow” has a significant negative coefficient.  

 

Table 5-14 Ordered Probit Model-2 for arterial accidents  

Severity 
classification Level-1, Level-2, Level-3, Level-4, Level-5 

Data points  4518 accidents 
From MD2, MD355, MD97, MD410, and US1 

Model estimation results 

        Parameter                          Estimate      t-statistic       P-value 

        C                                       -.170268       -4.40369      [.000] 

        HOURLY_VOLUME           -.840E-02   -1.00432      [.315] 

        INTERSECTION               .137688        3.82537       [.000] 

        WEATHER_SNOW             -.524007       -2.98789      [.003] 

        WEATHER_FOG              -.024564       -.112186      [.911] 

        DRIVER_DRINKING           .098716        1.24698       [.212] 

        *DRIVER_OTHER              .323975        2.94150       [.003] 

        WORKZONE                        .015619  .141684       [.887] 

        MEDIAN_DIVIDED            .015272  .422901       [.672] 

        µ3                                    .508958        31.6692       [.000] 

        µ4                                    1.20611        45.8941       [.000] 

        µ5                                    2.40500       34.7019       [.000] 

*Note: DRIVER_OTHER refers to the involved drivers who are under some abnormal 

conditions other than had-been-drinking.  
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Model-6: 3 levels (1+2, 3+4, 5) 

Table 5-15 presents the estimation results of Model-6, where hourly volume becomes 

a significant variable and other relationships remain unchanged.  This model specification 

is intended to explore the impact of reclassifying severity into three distinct levels on the 

estimated relationships. 

 

Table 5-15 Ordered Probit Model-6 for arterial accidents  

Severity 
classification  Level-1+Level-2, Level-3+Level-4, Level-5 

Data points 4518 accidents 
From MD2, MD355, MD97, MD410, and US1 

Model estimation results  

       Parameter                          Estimate      t-statistic       P-value 

       C                                     -.641253       -13.0495      [.000] 

       HOURLY_VOLUME      -.023771       -1.72515      [.085] 

       INTERSECTION              .167542       4.01417       [.000] 

       WEATHER_SNOW             -.417863       -2.01275      [.044] 

       WEATHER_FOG              -.034805       -.134809      [.893] 

       DRIVER_DRINKING           .131483        1.44084       [.150] 

       DRIVER_OTHER              .399042        3.25205       [.001] 

       WORKZONE                      -.088992      -.669264      [.503] 

       MEDIAN_DIVIDED           -.010797       -.256871      [.797] 

       µ5                                   1.89868        27.5385       [.000] 
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Model-8: 4 levels (2, 3, 4, 5)  

Table 5-16 presents the estimation results of Model-8.  

 

Table 5-16 Ordered Probit Model-8 for arterial accidents  

Severity 
classification  Level-2, Level-3, Level-4, Level-5 

Data points 2032 (excluding the property-damage-only accidents)  
From MD2, MD355, MD97, MD410, and US1 

Model estimation results  

       Parameter                          Estimate      t-statistic       P-value 

       C                                       .342533        4.88236       [.000] 

       HOURLY_VOLUME        -.051202       -2.41656      [.016] 

       INTERSECTION               .155234        3.00065       [.003] 

       WEATHER_SNOW              -.174407       -.580374      [.562] 

       WEATHER_FOG              -.256906       -.815444      [.415] 

       DRIVER_DRINKING            .124494        1.08203       [.279] 

       DRIVER_OTHER              .557906        3.67382       [.000] 

       WORKZONE                        -.185056       -1.15257      [.249] 

       MEDIAN_DIVIDED           -.114395       -2.17070      [.030] 

       µ4                                     1.04953        32.4510       [.000] 

       µ5                                     2.47255        31.4301       [.000] 

 

As reported in the exploratory analysis, the relation between the Level-1 severity and 

congestion is quite different from other severity levels as most accidents in the level-1 

severity involve property-damage-only accidents. Many minor accidents tend to occur 

during snow or poor weather conditions. This is proven by the significant parameter for 

the variable of “Weather_snow”. Model-2 and Model-6 consistently indicate that 

“Intersection” and “Driver conditions” are two significant factors affecting the results 

for accident severity. For both models, congestion (volume per lane) does not exhibit a 

strong significant impact due most likely to the difference in its relationship to accidents 

at the severity level of property damage only and personal injury. Therefore, Model-8 
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focuses on estimating the target relationship without the Level-1 severity accident data. 

After excluding the Level-1 severity data, the variable for snow days becomes 

insignificant and hourly volume emerges as one of the more significant factors. This fact 

is consistent with the belief that a large volume of Level-1 accidents (i.e. property 

damage only accidents) exists. 

 

Model-10: 3 levels (2+3, 4, 5) 

Table 5-17 presents the estimation results of Model-10. 

 

Table 5-17 Ordered Probit Model-10 for arterial accidents 

Severity 
classification  Level-2+Level-3, Level-4, Level-5 

Data points 2032 (excluding the property-damage-only accidents)  
From MD2, MD355, MD97, MD410, and US1 

Model estimation results  

       Parameter                          Estimate       t-statistic       P-value 

       C                                        -.589618       -6.29549      [.000] 

       HOURLY_VOLUME         -.091365       -2.82283      [.005] 

       INTERSECTION                 .135151        2.09398       [.036] 

       WEATHER_SNOW                -.652049       -1.25695      [.209] 

       WEATHER_FOG                -.636695        -1.22499      [.221] 

       DRIVER_DRINKING              .066267  .464270       [.642] 

       DRIVER_OTHER                .632713        3.71988       [.000] 

       WORKZONE                          -.112528      -.551702      [.581] 

       MEDIAN_DIVIDED              -.146471      -2.23421      [.025] 

       µ5                                      1.42960       18.7947       [.000] 

 

Table 5-17 presents the estimation results using the same model specification as 

Model-8 but  integrating Level-2 (possibly injured) with Level-3 (injured). The estimation 

results indicate that the integration of Level-2 and Level-3 accidents does not affect the 

relationship between accident severity and the identified significant variables.  
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Based on the estimation results of Tables 5-14 through 5-17, it can be concluded that 

the relationship between accident severity and key associated variables are as follows: 

• Congestion level (volume per lane): Accidents occurring on more congested 

arterials are more likely to be less severe. This is proven by the negative and 

significant parameters for volume per lane. 

• Intersection or not: Accidents occurring at intersections are more likely to be 

more severe. This may be attributed to the fact that there are more head-on 

collisions occurring at intersections than at roadway links. In addition, head-on 

collisions usually result in higher personal injury severity than other types of 

collisions, such as rear-end collisions.  

• Driver condition: The estimation results illustrate that if drivers involved in 

accidents are affected by abnormal conditions such as using drugs or having 

physical defects, the resulting severity is likely to be higher than for drivers under 

normal driving conditions. 

• Divided median type: The existence of median seems to contribute significantly 

to the reduction in the resulting accident severity, as evidenced in its significant 

and negative coefficient. 

• Weather conditions : When Level-1 severity of accidents is included in the 

sample dataset, the estimation results indicate that the snowing weather condition 

is a significant variable. This is proven by a larger number of Level-1 accidents 

(i.e., property-damage-only accidents). The estimation results  of Models 2 and 6 

further suggest that the accidents that occurred in snow conditions tend to be at a 

lower severity level. 

 

5.7 Model Estimation for Freeway Segments 

 

Using the same procedures and estimation algorithms, this section investigates the 

relationship between congestion and accident severity levels on freeways. Variables to be 

included in model specifications are listed below: 

q x1 : Hourly volume per lane 

q x2 : Auxiliary lane ratio 
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link  theoflength  the
link aon  lanesauxiliary  oflength   totalthe

  ratio laneAuxiliary =  

q x3 : Weather_snow 

q x4 : Driver conditions 

q x5 : In work-zone or not 

 

Model estimation results 

Table 5-18 illustrates the list of model specifications explored in this section and the 

associated datasets used for estimation.  Of the 12 experimental specifications listed in 

Table 5-18, Models 1, 5, and 9 present a consistent relationship between accident severity 

and key associated variables (see Tables 5-19, 5-20, and 5-21). 

 

Table 5-18 A complete list of estimated severity models for freeways 

 Severity Levels 
Modeled (Y) Dataset  Independent variables 

Model-1 (1, 2, 3, 4, 5) All available data 
Hourly volume per lane, auxiliary lane 
ratio (X2), weather_snow (X3), driver 

condition (X4), work-zone indicator (X5) 

Model-2 (1, 2, 3, 4, 5) Weekday data Hourly volume per lane, X2, X3, X4, X5 

Model-3 (1, 2+3+4, 5) All available data Hourly volume per lane, X2, X3, X4, X5 

Model-4 (1, 2+3+4, 5) Weekday data Hourly volume per lane, X2, X3, X4, X5 

Model-5 (1+2, 3+4, 5) All available data Hourly volume per lane, X2, X3, X4, X5 

Model-6 (1+2, 3+4, 5) Weekday data Hourly volume per lane, X2, X3, X4, X5 

Model-7 (2, 3, 4, 5) All available data Hourly volume per lane, X2, X3, X4, X5 

Model-8 (2, 3, 4, 5) Weekday data Hourly volume per lane, X2, X3, X4, X5 

Model-9 (2+3, 4, 5) All available data Hourly volume per lane, X2, X3, X4, X5 

Model-10 (2+3, 4, 5) Weekday data Hourly volume per lane, X2, X3, X4, X5 

Model-11 (2, 3+4, 5) All available data Hourly volume per lane, X2, X3, X4, X5 

Model-12 (2, 3+4, 5) Weekday data Hourly volume per lane, X2, X3, X4, X5 
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Table 5-19 Ordered Probit Model-1 for freeway accidents  

Severity 
classification  Level-1, Level-2, Level-3, Level-4, Level-5 

Data points 4868 accidents 
From I-495, I-695, I-95, I-270, and US50 

Model estimation results  

       Parameter                    Estimate             t-statistic       P-value 

       C                                 -.090075              -1.82659      [.068] 

       AUX_RATIO                  -.089372              -2.43609      [.015] 

       HOURLY_VOLUME      -.017528              -2.58344      [.010] 

       WEATHER_SNOW         -.341361              -2.93543      [.003] 

       DRIVER_DRINKING      .133097               2.01522       [.044] 

       *DRIVER_OTHER         .183071               2.44868       [.014] 

       WORKZONE                   .119781               1.15409       [.248] 

       µ3                               .483448               31.2991       [.000] 

       µ4                               1.09561               44.3738       [.000] 

       µ5                               2.24982               35.7829       [.000] 

*Note: DRIVER_OTHER refers to the involved drives who are in some abnormal conditions 

other than had-been-drinking.  
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Table 5-20 Ordered Probit Model-5 for freeway accidents  

Severity 
classification  Level-1+Level-2, Level-3+Level-4, Level-5 

Data points 4868 accidents 
From I-495, I-695, I-95, I-270, and US50 

Model estimation results  

       Parameter                    Estimate             t-statistic       P-value 

       C                                 -.432557              -7.71280      [.000] 

       AUX_RATIO                  -.171304              -3.88531      [.000] 

       HOURLY_VOLUME       -.034780             -4.41406      [.000] 

       WEATHER_SNOW         -.294648              -2.15177      [.031] 

       DRIVER_DRINKING      .091651               1.20733       [.227] 

       DRIVER_OTHER         .225370               2.67454       [.007] 

       WORKZONE                   .081391               .680242       [.496] 

       µ5                               1.77113               28.3265       [.000] 
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Table 5-21 Ordered Probit Model-9 for freeway accidents  

Severity 
classification  Level-2+Level-3, Level-4, Level-5 

Data points 1995 (excluding the property-damage-only accidents) 
From I-495, I-695, I-95, I-270, and US50 

Model estimation results  

       Parameter                    Estimate             t-statistic       P-value 

       C                                 -.371140              -4.21757      [.000] 

       AUX_RATIO                  -.239855              -3.43718      [.001] 

       HOURLY_VOLUME       -.050965             -4.07057      [.000] 

       WEATHER_SNOW         .047629               .205046       [.838] 

       DRIVER_DRINKING      .215036               1.94036       [.052] 

       DRIVER_OTHER         .316210               2.57182       [.010] 

       WORKZONE                   .138299               .798666       [.424] 

       µ5                               1.41237               20.2250       [.000] 

 

It is important to note that when severity level-1 data are excluded from the 

estimation the variable of snow condition becomes insignificant similar to the estimation 

results for arterials. This is proven in the Model-9 results. 
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Based on preliminary statistical results, Model-1 was selected for further estimation 

and the estimation results are reported in Table 5-22. 

 

Table 5-22 Final Ordered Probit Model for freeway accidents 

Severity 
classification Level-1, Level-2, Level-3, Level-4, Level-5 

Data points  4868 accidents 
From I-495, I-695, I-95, I-270, and US50 

Model estimation results  

       Parameter                    Estimate             t-statistic       P-value 

       C                                 -.084126              -1.71567      [.086] 

       AUX_RATIO                  -.091038              -2.48349      [.013] 

       HOURLY_VOLUME        -.017851             -2.63363      [.008] 

       WEATHER_SNOW         -.344029              -2.95859      [.003] 

       DRIVER_DRINKING      .133093                2.01529       [.044] 

       DRIVER_OTHER         .182727                2.44436       [.015] 

Stability test results 

Number of coefficients: K = 6 

Number of observations in subset-1: n1 = 2383 

Number of observations in subset-2: n2 = 2485 

Residual sum of squares:  

             2746;2533;5278 2
2

2
1

2 === ∑∑∑ eeep  

The resulting F statistics is 1.04 < F 0.95(6, 4856) = 2.10 

Therefore, the final Ordered Probit model is stable. 

 

Table 5-22 presents the estimation results using the same model specification as 

Model-1 but only including the significant exploratory variables. To ensure that all 

estimated parameter signs are independent to the differences in the sample size, a 

standard parameter stability test was also preformed. The test results are illustrated in 

Table 5-22 and clearly indicate that the estimated relationship between accident severity 

and key factors is stable and will not vary with the selected sample size.  



- 87 - 

It can be concluded from Tables 5-19 through 5-22 that the relationship between 

accident severity on freeways and key associated variables is as follows: 

• Congestion level (volume per lane): Accidents that occurred on more congested 

freeways are more likely to be less severe. This is proven by the negative and 

significant parameters for volume per lane.  

• The auxiliary lane ratio: Accidents that occurred on roadway links with higher 

auxiliary lane ratios are more likely to be less severe. This is proven by the 

negative and significant parameters for the auxiliary lane ratio.  

• Snowing weather conditions : Accidents that occur under snow conditions are 

more likely to be less severe. This may be caused by lower speeds and longer 

headways maintained by the drivers. The effect of rainy weather conditions is not 

statistically significant. 

• Driver conditions: The estimation results indicate that if drivers involved in 

accidents are under the influence of alcohol or subject to other abnormal 

conditions, the resulting severity will be higher than for drivers under normal 

driving conditions. This may be attributed to a decrease in human response and/or 

less attention to the presence of other vehicles or obstacles. 

 

5.8 Summary and Conclusions  

 

This  chapter has investigated the relationship between accident severity and 

congestion levels on both sample freeways and arterials.  It includes an exploratory 

analyses and multivariate statistical estimation using Ordered Probit regression.  

The research results, consistent with general beliefs, are summarized below: 

• Accidents occurring on more congested freeways and arterials are more likely 

to happen at a lower severity levels. 

• Accidents occurring at intersections are more likely to happen at higher 

severity levels.  

• Accidents on both freeways and arterials are more likely to occur at lower 

severity levels during snow conditions. 
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• If drivers involved in accidents are under the influence of alcohol or subject to 

other abnormal conditions, th e resulting severity will be higher than those 

under normal driving conditions.  

• Accidents occurring on a freeway link with higher auxiliary lane ratio are 

more likely to be at a lower severity level. 

• The presence of medians tends to contribute significantly to the reduction in 

the level of accident severity on arterials.  
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CHAPTER 6 

CLOSING AND FUTURE RESEARCH 

 

6.1 Closing 

 

This research investigated the relationship between congestion and accidents with a 

specific emphasis on the impact various volume levels have on the resulting accident 

frequency, rate, and severity. The work presented here consists of two primary phases;  

Phase-1 explored the discrepancies of accident characteristics under various conditions 

(e.g. peak and off-peak periods, work-zones and normal highway segments, weather 

conditions, and presence of medians); and  based on the preliminary results from Phase-1, 

Phase-2 focused on estimating the impacts of congestion and other primary factors on the 

distribution of traffic accidents on both freeways and arterials. 

 As a result of the stochastic nature of the accidents, this study used Poisson and 

Negative Bino mial regressions to estimate various continuous multivariate models to 

determine the relationship between congestion and accident frequency, and congestion 

and accident rate. In view of the inherently discrete and ordered relations among different 

severity levels, this study also explored the use of an Ordered Probit model to determine 

the compound impacts of traffic volume and associated factors on accident severity. To 

ensure the statistical stability of the estimated relationships, a rigorous stability test for 

the parameters of all significant variables was performed before conclusions were 

formulated. 

Based on the available sample freeway and arterial accident data from Year 2000, this 

study has yielded the following research findings: 

 

Accident frequency vs. congestion and other associated key factors 

Both the exploratory analyses and NB2 models established for arterials and freeways 

confirmed the following relationships: 

• Accident frequency on both freeways and arterials tends to increase with the 

congestion levels. 
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• Divided arterial links exhibit higher accident frequencies than undivided 

arterial links with the same volume levels.  

• Accident frequency on arterials generally increases with intersection density. 

• Wider medians can significantly redu ce accident frequency on freeways. 

• Accident frequency on both freeways and arterial links reveals an increasing 

trend with the total number of through lanes.  

 

Accident rate vs. congestion and other associated key factors  

With the Poisson accident rate model estimated for arterials and the NB1 peak-hour 

accident rate model for freeways, the following conclusions on the relationship between 

congestion and accident rate were identified.  

• The accident rate for arterials tends to decrease as volume increases.  

• The accident rate on freeways during off-peak hours appears to be random, 

exhibiting no systematic relationship with traffic volume.  

• During peak-congestion periods, accident rates tend to increase significantly 

with the volumes per lane.  

• Divided arterial links tend to exhibit higher accident rates than undivided 

arterial links with the same volume levels.  

• Wider medians can significantly reduce accident rates on freeway links. 

• Accident rate on arterials generally increases with intersection density. 

• An increase in the total number of through lanes may contribute to a higher 

level of accident rate on arterials but not on freeways. 

 

Accident severity vs. congestion and other associated key factors 

The Ordered Probit accident severity models were successfully established for the 

relationship between accident severity and congestion on both arterials and freeways.  

These research findings are summarized below.  

• Accidents occurring on more congested freeways and arterials are more likely 

to be at lower severity levels. 

• Accidents occurring at intersections are more likely to happen at higher 

severity levels than those occurring at roadway segments.  
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• Accidents occurring during snow conditions on freeways and arterials are 

more likely to be at lower severity levels than those occurring during normal 

conditions. 

• If drivers involved in accidents are under the influence of alcohol or subjected 

to any abnormal conditions, the severity of accidents is likely to be higher 

than those occurring under normal driving conditions. 

• Accidents occurring on freeway links with higher auxiliary lane ratios are 

more likely to be at lower severity levels. 

• The presence of medians tends to contribute significantly to the reduction in 

the resulting accident severity on arterials.  

 

6.2 Future Research Needs  

  

Although this study provide an in -depth analysis of the relationship between 

congestion and accidents, further investigation on the impacts of congestion on traffic 

safety is necessary. Recommendations for future research areas include: 

• The relationship between accident rate and intensity of lane-changing movements 

that is likely to be correlated to congestion levels. 

• The relationship between accidents and other indicators of the congestion level 

such as v/c ratio and speed reduction. 

• The impacts of highway geometric features (e.g. horizontal curvatures, and 

vertical gradients) on accident severity at various congestion levels. 

• The effects of congestion on behavior of accident-prone drivers (e.g. changing 

lanes when there is no sufficient length of gaps, failure to maintain a safety 

distance to the leading vehicle). 

• The impact of congestion on the secondary incident rate during the response and 

management of primary accidents. 
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Appendix-1: The Poisson and negative binomial regression models  
 

As proven in the literature review, accident occurrence is a Poisson Process in nature; 

therefore, it is appropriate to use the Poisson regression model to explore the relationship 

between accident frequency and identified exploratory variables. 

• Poisson Distribution 
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• ? is the mean of y. The most common formulation for ? is the log-linear model  
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• Use Maximum Likelihood Method to estimate the coefficient 

 

The assumption of the Poisson regression model is that the mean of the dependent 

variable is approximately equal to the variance of the dependent variable. Therefore, 

when this assumption is violated, the Poisson regression model will not provide a valid 

estimation of the relationship between accident frequency and congestion levels. The 

Lagrange Multiplier Test for over-dispersion is performed on every Poisson model. 

Under the hypothesis of the Poisson model, the limiting distribution of LM statistics is 

chi-squared with one degree of freedom. If the over-dispersion is significant in the model, 

Type I Negative Binomial and Type II Negative Binomial models are used. 

 

• Type I Negative Binomial model assumes the following relationship between 

mean and variance:  E [y] = exp (X * b) = µ 

Variance [y] = µ * (1 + a) 

• Type II Negative Binomial model assumes the following relationship between 

mean and variance:   E [y]= exp (X * b) = µ 

Variance [y] = µ + a *µ2 
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 Although a stronger assumption on the equality of the mean and variance of the 

dependent variable is needed for the Poisson model, it is shown to be more robust in 

terms of the model specification. Therefore, this study always starts with the Poisson 

model and whenever the over-dispersion presents negative binomial models will be 

employed. Furthermore, if the over-dispersion is not significant, the NB models will be 

estimated when the mean-variance ratio of the dependent variable is significantly 

different than 1. 
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Appendix-2: The Parameter Stability Test 
 

 The parameter stability test is carried out by the Chow test. First it estimates the 

regression model with the complete dataset and calculates the residual sum of squares 

( ∑ 2
pe ). Next, the sample dataset is randomly partitioned into two comparable sub -

datasets. Third, the regression models are estimated with the resulting two sub-datasets 

respectively and the residual sum of squares ( ∑ 2
1e , ∑ 2

2e ) is calculated. Finally, 

calculate the F-statistic:  
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Where, K is the number of coefficients in the regression model, n1 and n2 are the number 

of observations in two sub -datasets.  

 

Stability test results of the accident frequency model for arterials: 

• Partition the sample dataset and test the Poisson model stability. 

 

Where:  K =4, n1 =670, n2 =696 

Residual sum of squares (scaled by 104): 
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The resulting F statistics is 2.96< F 0.99(4, 1358) =3.34 

• Conclusion: the estimated Poisson model is stable. 

 

 Stability test results of the accident frequency model for freeways: 
 

• Partition the sample dataset and test the final model stability. 
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Where:  K = 5, n1 = 181, n2 = 177 

Residual sum of squares (scaled by 108):  
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The resulting F statistics is 1.25 < F 0.95(5, 348) = 2.21 

• Conclusion: the NB2 model is stable. 

 

Stability test results of the accident rate model for arterials: 

• Partition the sample dataset and test the Poisson model stability. 

 

Where:  K =4, n1 =670, n2 =696 

Residual sum of squares (scaled by 105):  

The resulting F statistics is 0.68< F 0.95(4,1358) = 2.37 

• Conclusion: the Poisson model is stable. 

 

Stability test results of the accident rate model for freeways: 

• Partition the sample dataset and test the model stability. 

 

Where:  K = 3, n1 = 89, n2 = 90 

Residual sum of squares:  

 

The resulting F statistics is 0.64 < F 0.95(3, 173) = 2.60 

• Conclusion: the final model is stable. 
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Stability test results of the accident severity model for freeways: 

• Partition the sample dataset and test the model stability. 

 

Where:  K=6, n1=2383, n2=2485 

Residual sum of squares:  

The resulting F statistics is 1.04 < F 0.95(6, 4856) = 2.10 

• Conclusion: the final model is stable. 
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