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CHAPTER1
INTRODUCTION

1.1 Motivation

Relieving traffic congestion and improving roadway safety are clearly top priorities
for most state highway agencies. These two issues have grown to become very dependent
on one another as substantial improvements to one could result in significant impacts on
the other. For example, an increase in the congestion level is likely to cause a higher
number of less severe accidents. This relationship seems to exist in the freeway accident
data recorded by the Maryland State CHART program (Chang, 2002).

There is also awidespread belief that similar relationship between congestion levels
and accidents may also exist on major arterials and/or streets. The severities of certain
types of crashes in the statewide arterial network tend to decrease as congestion levels
increase. However, rigorous studies conducted to analyze the complex relationship
between congestion and accidents (including frequency, rate, and severity) on freeways

or arterials have not yet been published in the transportation literature.

1.2 Research Objectives

In response to the aforementioned needs, this study intends to achieve the following
objectives:
Better understanding the relationship between congestion levels and the
frequency, rate, and severity of accidents on freeways and arterials;
Developing statistical models for assessing the impacts of traffic congestion on
the frequency, rate, and severity of accidents;
Identifying key factors that may have an impact on frequency, rate, and severity
of accidentsthat occur at various levels of congestion.
This study is based on a sample dataset from the Year 2000 accident information
record of the Maryland Automated Accident Reporting System (MAARS) from the



Maryland State Highway Administration (SHA), including atotal of 9944 accidents that
occurred on five primary commuting freeways and five major arterials. In addition, to
illustrate the highway geometric features of each accident analyzed, this study also refers
to the SHA highway information system (induding the traffic monitoring system and the
roadway geometry database).

1.3 Organization and Summary

Subsequent chapters of this report are organized as follows: Chapter 2 provides a
comprehensive review of related literature, and includes the following three sections:
review of accident frequency modeling, review of accident rate modeling, and review of
accident severity modeling. In addition, a review of literature on identification of
contributing variables and the definition of accident rate has also been included.

Chapter 3 presents the relationship between accident frequency and congestion levels
based on associated research findings. A graphical illustration and statistical test results
are provided in the exploratory analysis section. The exploratory analyses suggests that
the higher the level of congestion, the greater the probability that there will be a higher
level of accident frequency. Based on the preliminary findings from exploratory analyses,
this chapter further investigates the relationship between accident frequency and
congestion by examining the impacts of several factors using advanced statistical
methods, such as Poisson and Negative Binomial (NB) regression methods. This chapter
will illustrate that the surrogate variable, volume per lane, increases the frequency of
accidents on arterials and freeways. In addition, median type (divided roadway or not),
intersection density (number of intersections per unit length on alink), and the number of
through lanes have all been identified as significant variables contributing to the accident
frequency model for arterials. Median width, auxiliary lane ratio (ratio between the length
of auxiliary lanes and the link length), and the number of through lanes were identified as
significant variables for frequency models.

Chapter 4 presents the relationship between the accident rate and congestion levels
based on three different analyses: a comparison of the average accident rate between peak

and off-peak periods, a comparison of the accident rate among sampled roadway



segments experiencing different levels of congestion; and a bivariate correlation analysis
between the accident rate and the congestion levels. These analyses are intended to
examine whether highways with higher congestion levelsyield alower accident rate.

Subsequent to the exploratory analysis results, Poisson and Negative Binomial
regression methods were used to develop the accident rate model. The results indicate
that the accident rate on arterials tends to decrease with the volume per lane.
Additionally, the accident rate for freeways during off-peak hours appears to be random,
exhibiting no systematic relationship with the traffic volumes. However, during the peak
period, accident rates appear to increase significantly with traffic volumes. In addition,
median type (divided roadway or not), intersection density (number of intersections per
unit length on a link), and the total number of through lanes have al been identified as
significant variables in the accident rate model for arterials. In contrast, the median width
wasthe only variableidentified that had significant impact on the accident rate model for
freeways.

Chapter 5 presents the relationship between accident severity and congestion levels.
This chapter begins with an exploratory analysis that intends to identify factors that may
be associated with accident severity (e.g. accident location, roadway geometric features,
and driver conditions). An aggregated analysis of the relationship between the number of
accidents at various levels of severity and congestion levels on sample freeways and
arterials was conducted. Subsequently, other identified key factors were used as
explanatory variables and an Ordered Probit regression model was applied to estimate
severity models for arterial and freeway accidents. The estimation results indicated that
accidents that occurred on more congested freeways and arterials were more likely to
happen at alower level of severity, however, levels of severity may vary when introduced
to other contributing factors (e.g. at intersection or on roadway segment, driver condition,
median type, and weather condition).

Chapter 6 summarizes major findings of this study and offers additional
recommendations for consideration for future research in areas that could potentially

have an impact on traffic safety.



CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Despite the wealth of information available on accident analyses and congestion
monitoring, most of the existing research focuses on the two key issues (congestion and
traffic safety) separately and does not provide a concise examination of interrelationship.
The potential relationship between congestion and accidents (e.g. the impacts of peak and
off-peak traffic volumes on the accident rate or severity) has not been fully explored.
This chapter provides an overview of some of the research findings related to this subject,
and includes an analysis of the relationship between congestion and accident frequency,
the impact of congestion on accident severity, ad the variation of accident rate at
different levels of congestion.

This literature review is divided into the three sections. Recent studies and research
methods for modeling accident frequency is summarized in Section 2.2. Section 2.3
summarizes related studies on accident rates. Section 2.4 examines the state-of-the-art
research related to accident severity along with key research results. Finally, conclusions

and research findings are reported in Section 2.5.

2.2 Congestion level and accident frequency

Among alarge body of recent literature in accident frequency analysis, some studies
have made unique contributions and are summarized hereafter. For example, Shankar,
Mannering and Barfield (1995) performed a study on a 61 kn portion of 1-90 located

about 48 km east of Seattle. To minimize potential heteroskedasticity problems (see
Greene 2000, pp 499-524) and to maximize the estimation efficiency, they partitioned the

test portion of 1-90 into ten fixed-length sections. A monthly time-series accident
frequency data set was constructed, and the estimated model included solely the
geometric variables (e.g., number of horizontal curves in a section and maximum

horizontal curve radius in a section) and weather condition variables (e.g., number of
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raining days in a month and maximum daily rainfall in a month). No examination of the
relationship between accident frequency and congestion levels was conducted.

Shankar, Milton and Mannering (1997) developed an accident frequency model for
local arterials in Washington State where they defined roadway sections by their
homogeneous features such as number of lanes, roadway width, shoulder width, Annual
Average Daily Traffic (AADT), speed, and peak hour factors. One of the primary
findings of this study indicated that accident frequency increases with the AADT per
lane.

With respect to the estimation method, a significant number of studies have been
conducted using Poisson and Negative Binomial (NB) regressions to model accident
frequency (Miaou, 1994), which is due to the discrete and non-negative nature of
accident data. For example, Shankar, Mannering and Barfield (1995) used a NB
regression to develop the 90 accident frequency model. However, in a later study
(Shankar, Milton, and Mannering, 1997), the criteriafor defining sectionsresult in alarge
number of sections with short length and having zero accident frequency. To contend
with this data constraint, Shanker et a modeled accident frequencies as zero-atered
probability processes, and used the zero-inflated Poisson (ZIP) and the zero-inflated
negative binomial (ZINB) models to account for links without accidents.

In a related study, Persaud and Dzbik (1993) explored the nonlinear relationship
between accident frequency and volume. In their conclusion it was noted that on
congested roadways there was a higher occurrence of accidents than on uncongested
roadways with comparable volume levels. In addition, Abdel-Aty and Radwan (2000)
used both Poisson and negative binomial regressions to model traffic accident occurrence
and involvement on a sample freeway. They also used the likelihood ratio test to evaluate
the over-dispersion of the Poisson model and re-estimate their models with Negative
Binomial (NB) regression when over-dispersion was detected. The results indicated that
an increase in AADT per lane also increases the likelihood of higher accident frequency.
Greibe (2002) used generalized linear Poisson regression to establish the accident
prediction models for urban roads. The AADT was found to be the most significant
variablein the prediction of accident frequency.



Abbas (2003) developed a number of statistical models based on the accident data
over 10 years in Egypt. These models were based on the assumption that the number of
accidents, injuries, fatalities and casualties are a function of exposure represented with
AADT and AAVK (annual average vehicle kilometers). Five functional forms were
evaluated in the study conducted by Abbas, they include linear, power, logarithnic,
exponential and quadratic polynomia. The model, however, includes only AADT and
AAVK as explanatory variables.

Note that in all of the aforementioned studies AADT per lane was always used as a
surrogate variable of congestion. Besides AADT, only a small set of geometric and
weather condition variables were used in the model specification. The weather conditions
were accounted by variables such as number of rainy days and the maximum daily
rainfall in amonth.

The results of additional studies on accident frequency seem to share a common
finding that accident frequency is more likely to increase with the volume per lane. It is
also important to note that Poisson and NB regressions are recognized as appropriate
methods for accident related analysis (Miaou, 1994, and Shankar, Mannering and
Barfield, 1995).

2.3 Congestion level and accident rate

Studies on congestion level and accident rate indicate that the accident rate is defined
as the ratio between the number of accidents and associated volumes. This implies that
there is a linear positive correlation between the accident frequency and volumes. As
mentioned in the previous section, the accident data are discrete and non-negative in
nature. Therefore, it is appropriate to use Poisson or Negative Binomial regressions to
analyze the accident-related data. For example, in a recent study Mayora and Rubio
(2003) combined a multivariate Negative Binomia regression model and an Empirical
Bayes procedure to predict the accident rate. However, they did not examine the
relationship between accident rate and traffic volumesin their research.

Karl aftis and Golias (2002) adopted a non-parametric statistical methodology, known
as the hierarchical tree-based regression (HTBR), to model the accident rate with rural



road geometric characteristics and traffic volumes. Traffic volumes were not included as
an independent variablein their regression model, and although the functional form needs
not to be specified in advance, the estimation for HTBR requires a large sample size to
form the hierarchical tree.

Regarding independent variable selection, Knuiman et al (1993) explored various
methods for associating the median width with the highway accident rate, including using
both a categorical variable and a continuous variable to represent the median width. The
research findings indicated that accident rates decreased with an increased median width,
and there was insignificant decrease in accident rates for medians less than 20 to 30 ft in
width.

Zhou and Sisiopiku (1997) examined the general relations between hourly accident
rate and hourly traffic volume/capacity (v/c) ratios. With a U-shaped graph their study
revealed that the accident rate decreases rapidly with an increase in the vic ratio until v/c
falls in the range of 0.55 to 0.65, at which time the rates gradually increases with the v/c
ratio. Qin et al. (2003) and Kam (2002) both made some scaling operations to transform
the relationship between “accident rate” and “exposure” into a linear from. Qin et a.
(2003) used the estimated zero-inflated Poisson model to recalculate risk-oriented crash
rates (e.g. the normalized crash rate). Kam (2002) used a disaggregated approach by
matching accident records to a defined travel corridor to derive an induced exposure. His
results revealed the existence of a polynomial function of a cubic order when crash rates
were plotted against age groups. It was distinctly different with the U-shaped curve
generated using the conventional approach. Both of the above approaches are also used to
observe the relationship between accident rate and traffic volume. Martin (2002) explored
the relationship between crash rate and annual average hourly volume on French
interurban motorway networks. It was determined that such a relationship varies based on
the number of through lanes on a roadway and the number of vehicles involved in
accidents.

In summary, very few of the existing studies have examined the rel ationship between
accident rate and traffic volume. The results of studies on the accident rate seem to share
a common conclusion that the relationship between the accident rate and traffic volume

cannot be fully captured using a linear relation, and either the definition of accident rate



or the functional form of the relationship between accident rate and volume should be
further evaluated.

2.4 Congestion level and accident severity

The severity of an accident is often measured by the level of injury of the most-
seriously injured vehicle occupant (Chang and Mannering, 1999). Thus, the severity level
has a discrete outcome and this nature of response data tends to suggest the use of a
logistic regression in model development (e.g., Shankar and Mannering 1996; Chang and
Mannering, 1999; Carson and Mannering, 2001). Accident severity can also be indexed
using a binary variable such as a fatal or non-fatal indicator. In fact, this method was
applied by Al-Ghamdi (2002) and it was determined that the following variables are most
associated with the accident severity: location, accident type, vehicle type, license status,
collision type, and accident time.

In a study conducted by Lee and Mannering (2000), a nested logit model was used to
isolate awide range of factorsthat significantly influence the severity of run-off-roadway
accidents. In the work by Amoros (2002), severity was measured by the ratio between
fatal and injury accidents, which corresponds to the probability of a binomial setting. In
addition to the logistic regression methods, some researchers (Kockelman and Kweon,
2001, and O’'Donnell and Connor, 1996) have adopted a multi-class crash analysis with
the Ordered Probit models for accident severity analyses. Yau (2003) used stepwise
logistic regression models to identify the risk factors associated with each vehicle type
and indicated that weekday indicator and time-of-day are important variables that may
affect the severity of injuries.

In the literature on modeling accident severity, very few studies have attempted to
address the relationship between the road traffic flow and crash occurrence. Among
these, it was the work of Martin (2002) that has explored the relationship between
accident severity and hourly traffic flow. Martin's analysis of this relationship was
implemented in two steps. First he addresses the probability of observing a crash and the
number of vehicles exposed to the accident. Then he used a logistic regression to model

the probability that a vehicle involves in injury-crashes. The explanatory variables used



were day-night difference, traffic volumes, and the interaction between these two factors.
Martin did not reach any conclusion with respect to the relationship between the crash
severity and traffic volumes.

2.5 Summary

Based on the literature review, it can be determined that traffic volume, as a surrogate
variable of congestion, plays a significant role in accident frequency, rate, and severity
analyses. Some significant relationships were identified including the relationship that a
higher traffic volume usually resultsin higher accident frequency and that thereislikely a
U-shaped relationship between traffic volume and the accident rate. Although key factors
affecting the accidents have been extensively studied, the complex relationship between
congestion and accident, especially the impact of the traffic volume on accident severity,
has not been sufficiently investigated. For example, the relationship between congestion
and accident (rate or severity) may vary with time of day (e.g. peak or off-peak hours),
and differs significantly between arterials and freeways. In addition, thisrelationship may
also change with the roadway environment and weather conditions.



CHAPTER 3
ACCIDENT FREQUENCY AND CONGESTION LEVEL

3.1Introduction

This Chapter examines research results related to the relationship between accident
frequency and congestion level on both sample freeways and arterials. It will aso
examine accident frequency during peak and off-peak hours and the potential factors that
may contribute to an increase in accident frequency during congestion. The primary focus
of this chapter is to test the hypothesis that accident frequency on either freeways or
arterials will increase with congestion level.

To begin a comparison of average accident frequency (per hour per mile) between
peak and off -peak periodsis examined. This examination is based on the assumption that
average accident frequency during peak hours is generally higher than average accident
frequency during off-peak periods. The results of the comparison along with the data
from five freeways and five local arterials are presented in Section 3.3. In addition to the
exploratory analysis is a comparison of accident frequency between sampled roadway
segments experiencing different levels of congestion, and a bivariate aggregate
correlation analysis between accident frequency and congestion level. It is expected that
highwayswith higher levels of congestion yield a higher accident frequency.

Based on the preliminary findings from the exploratory analyses, this study further
investigates the target relationship between accidents and congestion under the compound
impacts of various contributing factors using advanced statistical methods such as
Poisson and Negative Binomial regression models. The estimation results with respect to
freeways and arterials are presented in Section 3.4 and Section 3.5. A brief description of
the research proceduresis presented in aflowchart in Figure 3-1.
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Figure3-1 A flowchart of the research procedures for accident frequency analysis

Select sample arterials and freeways

!

Perform necessary data aggregation

|

Perform exploratory analyses to
identify potential variables and their
relationship to accident frequency

!

Multivariate statistical analysis

|

Model estimation and
conclusions

3.2 Data Set Availablefor Analysis

In organizing a sample dataset for analysis, all accidents on each roadway link were

converted into the following definition of accident frequency per mile:

Number of accidents on alink

Actident frequency = The link length

In addition, the data collected for analysis also includes accident nature, traffic flows,
and roadwey features in detail. Primary information associated with accidents and
congestion was obtained from the highway information system and the Maryland
Automated Accident Reporting System (MAARS) from Maryland State Highway
Administration (SHA). The first database contains a list of roadway segments and
associated traffic and geometric characteristics. The second database includes the
location of accidents and related information. A careful integration of these two databases
yielded the initial sample dataset that consists of five arterials and five freeway segments
(see Table 3-1). The main reasons of choosing these sampled roadways are that they have

-11-



complete geometric and traffic information in two databases, and they are the major
arterials/ freeways in the Washington/Baltimore Area.

Table 3-1 Sample arterials and freeway segments for accident frequency analysis

Arterials Freeway Segments
Index
Road ; Road .
t locat t locat
name Segment location name Segment location
1 USsL Between Baltimore City Line 1-495 Between Virginia State Line
and Washington DC Line and 1-95 Exit 27
MD2 The entire length 1-270 The entire length
3 MD97 The entire length 1-695 The entire length
. Between Baltimore City Line
4 MD355 The entire length [-95 and Virginia State Line
. Between Washington DC Line
5 MD410 The entire length Uss0 and Bay Bridge
Sample
/Accidents 4542 5402
Sample
Year Y ear 2000 Year 2000

To minimize the potential sampling bias and partially account for the stochastic
nature of the accident distribution, this study aggregated short but interconnected links
with common features as long links. The criteria used for link aggregation are
summarized in Table 3-2.
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Table 3-2 Criteriafor link aggregation and the results

Arterials Freeway segments
AADT level AADT level
Main variables . — . -
for clustering Median type (divided or not) Median width
Number of through lanes Number of through lanes
us1 29 Links [-495 18 Links
MD2 32 Links [-270 39 Links
Clustering - .
Results MD97 25 Links 1-695 59 Links
MD355 25 Links 1-95 49 Links
MD410 18 Links US50 14 Links

Indicator s of congestion levels
Since a rigorous definition of “congestion” is beyond the scope of this study and is
one of the on-going research issues in the traffic community, the remaining analyses

intend to use the “volume per lang” as the surrogate variable for congestion. Although it
does not accurately reflect the actual congestion level on a given link, it should be

sufficient for comparison purposes.

3.3 Exploratory Analyses

The following exploratory analysis intends to investigate whether or not the accident
frequency increases with congestion level using three different comparisons, which
include:

A comparison between peak-hour (7-9AM and 4-6PM) and off-peak-hour
accident frequencies, using the hypothesis that on most highway segments the
average peak-hour accident frequency should be higher than off-peak-hour
accident frequency, if a higher level of congestion is more likely to cause more

frequent accidents.
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The second anaysis performed a cross-section comparison of accident
frequencies on five sample arterials and freeways to evaluate whether highways
with higher levels of congestion yield more accidents.

The third analysis was conducted to evaluate the correlation between accident
frequency and volumes per lane, which was used as a surrogate variable
representing congestion level.

Comparison of accident frequency during peak and off-peak hours

Figure 3-2 through Figure 3-6 illustrates the differences between peak-hour and off-
peak-hour accident frequencies for five sample arterials. Figure 3-7 through Figure 3-11
illustrates the same comparison for five sample freeways. As reflected in graphical
illustrations, the average accident frequency during peak hoursis higher than the accident
frequency during off-peak hours on all sample arterials and freeways. Results of
statistical tests (see Table 3-3) and an econometric method (see Table 34) have further
confirmed this relationship.

Figure 3-2 A comparison of the accident frequency on MD2 between peak hours
and off-peak hours
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Figure 3-3 A comparison of the accident frequency on M D355 between peak
hours and off-peak hours
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Figure 3-4 A comparison of the accident frequency on US1 between peak hours
and off-peak hours
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Figure 3-5 A comparison of the accident frequency on MD410 between peak
hours and off-peak hours
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Figure 3-6 A comparison of the accident frequency on MD97 between peak hours
and off-peak hours
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Figure 3-7 A comparison of the accident frequency on I-495 between peak hours
and off-peak hours
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Figure 3-8 A comparison of the accident frequency on US50 between peak hours
and off-peak hours
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Figure 3-9 A comparison of the accident frequency on I-695 between peak hours
and off-peak hours
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Figure 3-10 A comparison of the accident frequency on 1-270 between peak
hours and off-peak hours
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Figure 3-11 A comparison of the accident frequency on 1-95 between peak hours
and off-peak hours
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A statistical test was performed to examine the equality of average accident frequency

during the peak and off-peak periods for all sampled roadway segments. The test results

arelisted in Table 3-3.

Table 3-3 Mean Equality tests and results

The average accident frequency during peak period is equal
Hypothesis to the average accident frequency during off-peak periods
among all five sample local arterials
Data sed Accident frequency during peak hours (7-9AM and 4-6PM)
Accident frequency during off peak hours
Test results of five sample surface streets
Route Name MD2 MD355 USs1 MD410 MD97
Sample Size (n) 32 25 29 18 25
F-ratio 6.509 9.344 7.467 6.233 1.681
F 1,2(n-1)[0.975] 3.996 4.043 4,013 4.130 4.043
Conclusion Reject Reject Reject Reject Accept
Test results of five sample freeway segments
Route Name [-495 1-695 [-95 [-270 USs0
Sample Size (n) 18 39 59 49 14
F-ratio 2.345 28.084 12.300 12.838 1.482
F 12(n-1)[0.975] 4.130 3.967 3.923 3.940 4.225
Conclusion Accept Reject Reject Reject Accept

From the test results in Table 3-3, it was determined that the means of accident
frequency during the peak and off-peak periods are significantly different for MD2,
MD355, US1, MD410, I-695, I-95, and I-270. To further investigate the hypothesis that
peak periods generally have a higher accident frequency than off-peak periods, the
dummy variable method was used (Greene, 2000) to evaluate the target relationship. The
test results are summarized in Table 3-4.
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Table 3-4 Procedures and results of the dummy variable method (Greene, 2000)

H;: Accident frequency (peak hour) > Accident frequency (off-

Hypothesis peak hour)
i.eeHp:d=0;H;:d>0
y, =m+d * Dum+e,
Test procedures | Set Dum = 1, if the sampleisin peak hour
= 0, otherwise
Accident frequency during peak hours (7-9AM and 4-6PM)
Data used ) )
Accident frequency during off peak hours
Test results of five sample surface streets
Route Name MD2 MD355 usi MD410 MD97
Sample Size (n) 32 25 29 18 25
T-statistic of
2.551 3.057 2.733 2.497 1.297
Dumcoefficient
Ton2(0.99) 1.669 1.676 1.672 1.688 1.676
. RejectHp | ReectHgp | ReectHg | ReectHg
Conclusion Accept Hy
Accept H1 | Accept H1 | Accept Hi1 | Accept Ha
Test results of five sample freeway segments
Route Name [-495 [-695 [-95 [-270 uUs50
Sample Size (n) 18 39 59 49 14
T-statistic of
o 1531 5.299 3.507 3.583 1.217
Dumcoefficient
T2 (0.95) 1.688 1.665 1.658 1.661 1.701
. RejectHo | RegectHo | Reect Ho
Conclusion Accept Ho Accept Ho
Accept Hy | Accept Hy | Accept Hy
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The results for MD97, F495 and US50 are the only areas that do not support the
hypothesis that average accident frequency during peak hours is higher than the average
accident frequency during off-peak hours.

Further analysis of the relationships between accident frequency per mile per link and
the AADT per lane per link on MD97 (as shown in Figure 3-12) indicated that there were
some data points (represented in the circled area, located in Carroll County and up to
Pennsylvania State Line) that caused unexpected results. In fact, this segment of MD97 is
quite a distance away from any urban areas and has no significant work-rel ated peak-hour
traffic. Therefore, it is reasonable to expect that the peak-hour accident frequency does
not vary significantly from the off -peak-hour accident frequency.

Figure 3-12 The relationship between accident frequency and AADT per laneon
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On 1-495 and US50, the failure to accept the hypothesis that accident frequency
differs between peak periods and off-peak periods can potentially be attributed to two
factors: both freeways have a high volumes throughout the peak and off-peak periods,
and factors other than congestion may contribute significantly to an increase in accident
frequency on thosefreeways.
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Cross-section comparison of the accident frequency

The following analyses are designed to further test the hypothesis that highways with
higher levels of angestion should experience a higher accident frequency if there is a
high correlation between accident frequency and congestion. The focus of thisanalysisis
to compare the mean of the accident frequencies per mile between sample roadway
segments.

Table 3-5 summarizes the results of the ANOVA tests for both the sample freeways
and arterials. The conclusion from this test found that the average accident frequency of
sample arterials during off-peak hours exhibits no significant difference anong sampled
arterials. However, a distinct difference does exist during the peak hour accident
frequency among the sampled arterials and in the accident frequency on freeways during
both peak and off-peak hours. A plausible explanation for the test results is that all
sample arterials experience little congestion during off-peak periods and as a result,
accident frequencies are more random in nature, and not correlated with factors such as
traffic volume. One may also assume that the inconsistency in peak-hour accident
frequency is due to substantial differencesin congestion levels as evidenced in the peak-

hour volume per lane for sample arterials shown in Figure 3-13.
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Table3-5 ANOVA tests and results

Balanced ANOVA test for arterials

. The means of accident frequency are statistically equal across all
Hypothesis _ )
five arterials
ANOVA test | Thennumber of factor levels (treatment groups): k=5
parameters The number of observationswithin each factor level: n= 18
Accident frequency in peak hours (7-9AM and 4-6PM
Data used edency inp ( )
Accident frequency in off peak hours
Test results on the arterial dataset
Dependent Variable Y F Fom Conclusion
Peak-hour accident frequency 2.64 248 Reject
2 Off-peak accidents frequency 1.96 248 Accept
Unbalanced ANOVA test for freeways
The means of accident frequency are statistically equal acrossfive
Hypothesis eq 4 yeq
freeways
The number of factor levels (treatment groups): k=5
ANOVA test ) o
The number of observations within each factor level:
parameters
n; = {18, 39, 59, 49, 14}
Accident frequency in peak hours (7-9AM and 4-6PM)
Dataused
Accident frequency in off peak hours
Test results on the freeway dataset
Dependent Variable Y F ngs Conclusion
1 Peak-hour accident frequency |  6.29 242 Reject
2 Off-peak accidents frequency 4.89 242 Reject
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Figure 3-13 The hourly volume per lane on five arterials
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Bivariate correlation test between the accident frequency and volume per lane

Figures 3-14 through 3-23 presents the relationship between volume per lane and the

resulting accident frequency on each link for both sample arterials and freeways. These

graphical relationships reveal the following critical information:

Some approximate linear relationship between accident frequency and

volume per lane exists.

Other factors may contribute to an increase in accident frequency as

evidenced in the variance of the linear trend.

As aresult of these, the remaining multivariate analysis between accident frequency

and main contributing factors will be based on the Poisson and Negative Binomial

models, rather than the multiple linear regression.

Figure 3-14 Accident frequency versus volume for MD2
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Figure 3-15 Accident frequency versus volume for MD355

Figure3-

MD355

18.00

16.00

i
»
o
IS

12.00
10.00

8.00

6.00

Accident frequency

4.00

&

2.00

0.00 -

aey

ot rY

0 200 400

Hourly volume per lane

800 1000

® Peak hours
Off-peak hours

16 Accident frequency versus volume for US1
us1
9.00
8.00
*

S 7.00 L J
§ 6.00 3 .0
8 500 = ® e *
Z 400 -
5 L.
3 300 > Y .
S 200 * g 5 ¢ *
< -

1.00 =g 4 . >~y * *

0.00 i f - 2 . . .

0 200 400 600 800 1000

Hourly volume per lane

# Peak hours
Off-peak hours

Figure 3-17 Accident frequency versus volume for MD97
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Figure 3-18 Accident frequency versus volume for MD410
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Figure 3-20 Accident frequency versus volume for [-95
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Figure 3-21 Accident frequency versus volume for |-695
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Figure 3-22 Accident frequency versus volume for |-495
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Figure 3-23 Accident frequency versus volume for US50
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3.4 Modd Estimation for Arterials

There are avariety of factors that may contribute to an increase in accident frequency.
The previous exploratory analysis indicates that a single factor may not completely
explain the relationship between accident frequency and congestion level. Therefore, this
study further employed multivariate statistical methods to investigate such arelationship.

Based on the resultsin Section 3.3 and the information found in the literature review,
the set of variables for inclusion in the analyses are listed below:

The dependent variable of the accident frequency model is accidents per mile
during peak or off-peak hours.

The set of independent variables available for model development are:

o xu: Annua average peak hour volume and off -peak hour volume—“volume”

O Xp: Median type (divided or not) —“median”

0 x3: Number of intersections per unit length on alink — “intdensity”

o x4 Section length—“length”

a Xs: Number of through lanes—*“thruln”

From the correlation matrix of the independent variable (Table 3-6), it becomes clear
that the number of intersections and the section length of road links are highly correlated.
Therefore, the remaining analysis uses intersection density (the number of intersections
divided by the section length) instead of the number of intersections directly. In addition,
there is a high correlation between the number of through lanes and median type or
section length, resulting from the design properties and the link clustering operations. For
example, divided-median roadway links are usually associated with a higher number of
through lanes as opposed to undivided-median roadway links, explaining the positive

correl ation between these two variables.
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Table 3-6 Correlation matrix for candidate variables

Y Accidents per nmile
x_1 Vol une per |ane
X_2 Di vi ded nedi an or not
x_3 Nunber of intersections
X_4 Length of the roadway |ink
x_5 Nunber of through | anes
Correlation Matrix

Y X1 X 2 X 3 X 4
Y 1. 00000
X1 0. 33999 1. 00000
X 2 0.18828 -0.01131 1. 00000
X_3 0. 23544 0. 05562 -0.07749 1. 00000
X 4 -0.31710 -0. 02707 -0.20435 0. 41339 1. 00000
X5 0. 43603 -0. 01816 0. 46278 0. 00981 -0.43354

Estimation method
As is well recognized, Poisson regression is one of the most effective methods for
modeling accident occurrence. A concise presentation of the Poisson regression
algorithm can be found in Appendix-1. When using Poisson regression, it is important
that the Lagrange Multiplier Test for over-dispersion aso be conducted. Under the
hypothesis of the Poisson distribution, the limiting distribution of LM statistics is Chi-
Squared with one degree of freedom. If the over-dispersion is significant in the model
either the Type | Negative Binomia or Type Il Negative Binomial models should be
used.
Type | Negative Binomia model assumes the following relationship between
mean and variance:
Ely] =exp(X* b) =
Variance[y] =p* (1 +a)
Type Il Negative Binomial model assumes the following relationship between
mean and variance;
Elyl=exp (X* b) =u
Variance [y] = g+ a*p?
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Model estimation results
Of the 15 models in Table 3-7 that had different combinations of independent
variables, the best model for arterials yielded the estimation resultsin Table 3-8.

Table3-7 List of all models being evaluated for arterials

. Number | Estimation
Functional form

of models method

Y =bo+by Xy 1| Poisson
Y =bg+by X1+bs X, i=2,....5 4 Poisson
Y =bo+b1 X1 +b2o Xi +bs Xj,i=2,...,4, =2,...,5, i< 5| Poisson
Y =bg + by X1 +bs X +b3X" +b4Xk,i=2,3,j=2,3,4, 4 Poisson
k=2,... 5, i<j<k
Y =bg+b; X1 +byXs +b3 X3 +bs X4 +bs X5 1 Poisson
Tota 15

Table 3-8 Estimation results of the best arterial model with Poisson regression

Parameter Edimate  t-statistic  P-value
C 2.960 11.891  [.000]
X1 (Volume per lane) 160 8.198 [.000]
X2 (Median Indicator) 152 1.702 [.089]
X3 (Intersection density) 021 9.543 [.000]
X4 (Link length) -.217 -3.361 [.007]
xs (Number of thru lanes) 354 9.310 [.000]
Over-dispersion test result
Chi-Squared statistics P-value
1.097 [.295]
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The estimation results shown in Table 38 illustrate the following conclusions for

arterials:
Accident frequency on arterialsincreases with the congestion level.
The coefficient of the median indicator is positive and significant, which
suggests that divided roadway links usually exhibit higher accident
frequencies than undivided roadway links at the same volume levels. This
may be attributed to relatively high speeds on the divided roadway links or
limitations of the selected sample datasets.
Accident frequency on arterials increases with intersection density (number of
intersections per unit length of the roadway link).
Arterials with a high number of through lanes are more likely to have a higher
frequency of accidents.

To assess the potential impact of data aggregation on the estimation results, in this
study Poisson regression was performed with the original dataset. In addition, since the
last two explanatory variables has high correlation with median type and intersection
density, only the first three explanatory variables are included in the new estimation with
the origina dataset. The estimated results are presented in Table 3-9, where the

parameters for volume per lane, median, and intersection density are significant and have
the same sign as the results using the aggregated database.
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Table 3-9 Estimation results with Poisson regression for the original arterial links

Parameter Edimate t-statistic P-value
C 4.02932 34.9559 [.000]
VOLUME 126751 6.71211 [.000]
MEDIAN 547611 5.01301 [.000]

INTDENSITY .028548 9.23268  [.000]

Over-dispersion test result
Chi-Squared statistics P-value
5.88179 [.015]

Stability test results

Number of coefficients: K = 4

Number of observations in subset-1: n; = 670

Number of observationsin subset-2: n, = 696

Residual sum of squares (scaled by 10%):

A € =184695539 ; § € = 64050659 ; Q €; =119047128

Theresulting F statisticsis2.96 < F.99(4, 1358) = 3.34

Since theresults on Table 3.9 illustrate the existence of over-dispersion, the Negative
Binomia model was estimated and the results (NB2 model) are illustrated in Table 3-10.
The estimated relationship between accident frequency and its primary explanatory
variables, including volume, median, and intersection density, appeared to be consistent
regardless of the differences among the datasets or the estimation algorithm used (see
Tables 3-9 and 3-10).
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Table 3-10 Estimation results with NB2 regression for the original arterial links

Parameter Edimate t-statistic P-value
C 3.27443 17.8700 [.000Q]
VOLUME .190534 5.44034 [.000Q]
MEDIAN .816652 6.21659 [.000Q]

INTDENSITY .054366  7.56145  [.000]
ALPHA 5.86524 24.7020  [.000]

To ensure that the estimated parameter signs are independent of the difference in the

sample size, a parameter stability test was performed (refer to Appendix-2 for details).
The test results (see Table 39) indicated that the reported relationship between accident

frequency and its key factors are stable and will not vary with the available sample size.

3.5 Modd Estimation for the Freeway Segment Dataset

Using the same estimation algorithm, this section explores the relationship between

accident frequency and congestion level on freeways. The variables to be included in our
model arelisted below:

The dependent variable: the accident frequency during peak or off-peak periods.

The independent variables:

o x1:
X2 :

o xb:

m}
o X3:
Q

X4 :

Volume per lane
Median width
Auxiliary laneratio
Link length

thetotal length of auxiliary lanesonalink
thelength of thelink

Auxiliary laneratio =

Number of through lanes

The model estimation results are listed in Table 3-11, and al models were estimated

using Poisson regression. The estimation results of the most consistent model are listed in

Table 3-12.
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Table3-11 List of al models being evaluated for freeways

) Number | Estimation
Functional form

of models method
Y =bo+b1 X1 1| Poisson
Y =bg+by X +bs X;,i=2,...,5 4 Poisson
Y:b0+b1X1+b2Xi +b3X],i:2,...,4,j:2,...,5,i<j 5 Poisson
Y=bo+hb X1 +b2Xi +b3X +baXk i=23,j=2,3,4, 4| Poisson

k=2,...,5,i<j<k
Y =bo+b1 X1+b2X2 +b3Xs +hsXs +bs5 Xs 1 Poisson
Total 15

Table 3-12 Estimation results for freeways with Poisson regression

Parameter Edimate t-statistic =~ P-value
C 1.420 7.256 [.000]
X1 (volume per lane) 957E-03 9.107 [.000]
X (median width) -2246E-02  -2.062 [.039]
X3 (auxiliary lane ratio) 126 1501 [.133]
xs (number of thrulanes)  .058 3.133 [.002]
Over-dispersion test result
Chi-Squared statistics P-value
.105 [.746]

The over-dispersion test statistic is significant for this Poisson model, and requires
additional analysis using the Negative Binomial regression. Tables 3-13 and 3-14 present
the estimation results using NB1 and NB2 models. It was observed that the relationship
between accident frequency and volumes per lane, median width, and the number of
through lanes are all consistent regardless of the differences in the estimation algorithm
(see Tables 3-12, 313, and 314). It isimportant to note that the parameters of variables
observed also exhibited significant statistical stability as evidenced in the results of model

stability test (see Table 3-14).
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Table 3-13 Estimation results for freeways with NB1 regression

Parameter Edimate t-statistic
C 1.779 9.479
X1 (volume per lane) .748E-03 8.819
x2 (median width) -.298E-02 -3.845
X3 (auxiliary laneratio) .059 .938
X5 (number of thru lanes) .052 2.760
a 10.848 10.691

Pvalue
[.000]
[.000]
[.000]
[.348]
[.006]
[.000]

Table 3-14 Estimation results for freeways with NB2 regression

Parameter Edimate t-statistic  Pvalue
C 1.176 5.068 [.000]
x1 (volume per lane) J104E-02 9.69%4 [.000]
x2 (median width) -147E-02  -1.977 [.048]
x3 (auxiliary lane ratio) 170 1.946 [.052]
x5 (number of thru lanes) .070 2.837 [.005]
a 576 12.053 [.000]

Stability test results

Number of coefficients: K =4
Number of observations in subset-1: n; = 181

Number of observations in subset-2: n, = 177

Residual sum of squares (scaled by 10°):

4 € =98110;§ & =43%81; § e =52745

Therefore, the NB2 mode is stable

The resulting F statisticsis 1.25 < F 0.95(5, 348) = 2.21
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Based on the above stable significant results, the following can be concluded for

freeways:

Accident frequency on freeways tends to increase along with an increase in
the congestion level.

Wider medians can significantly reduce accident frequency on freeways.
Accident frequency on freeways increases along with an increase auxiliary
laneratio, which is associated with potential lane-changing movements.

Accident frequency on freeways increases along with an increase the number
of through lanes.

3.6 Summary and Conclusions

This chapter investigated the relationship between accident frequency and congestion

levels on sampled freeways and arterials, and includes exploratory anayses and

multivariate statistical estimation using Poisson and Negative Binomial regressions. The

research results were found to be consistent with previous assumptions, which are

summarized below.

Accident frequency on both freeways and arterials tends to increase with an
increase in the congestion level.

Divided arterial links exhibit higher accident frequencies compared to
undivided arterial links at the same volume levels.

Accident frequency on arterials increases along with the increase in
intersection density (number of intersections per unit length of the arteria
link).

Wider medians can significantly reduce accident frequency on freeway links.
Accident frequency on freeways increases with auxiliary lane ratio (the ratio
of total length of auxiliary lanes on alink toitslink length).

Accident frequency increases with the increase in the number of through lanes

for both freeway and arterial links.
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CHAPTER 4
ACCIDENT RATE AND CONGESTION LEVEL

4.1 Introduction

This Chapter presents the research results for the analysis of the relationship between
accident rate and congestion on both sample freeways and arterials. Included in this
chapter is an exploratory analysis of accident rate during peak and off-peak hours and the
potential factors that may contribute to changes in the accident rate under various traffic
conditions. Overall, the primary focus of this chapter is to determine if a systematic
pattern between accident rate and congestion on either freeways or arterials exists.

To begin, an exploratory analysis comparing the average accident rate between peak
and off-peak periods was performed. It is expected that the peak hour accident rate will
be generally lower than the average accident rate during the off-peak period if a negative
correlation between the accident rate and congestion level exists. The comparison results,
based on the data from five freeways and five local arterias, are presented in Section 4.3.
In addition, the exploratory analysis includes a comparison of accident rate among
sampled roadway segments experiencing different levels of congestion, and a bivariate
correlation analysis between the accident rate and congestion levels. These analyses were
performed to examine if highways with higher levels of congestionyield alower accident
rate.

Based on the findings of exploratory analyses, this study further investigated the
target relationship between accident rate and congestion under the comp ound impacts of
various contributing factors using Poisson and Negative Binomial regressions. The

estimation results for freeways and arterials are presented in Section 4.4 and 4.5.

4.2 Data Set Availablefor Analysis

The accident data set used in this chapter is the same set of data used to examine

accident frequency analysis, and includes the same link aggregations and the same

-36-



surrogate variable for congestion. In the remaining sections and presentations the

accident rate is defined as follows:

Number of accidents on alink
AADT" Thelength of the link

Accident rate =

4.3 Exploratory Analyses

The following exploratory analysis intends to investigate whether the accident rate
decreases with the congestion level from three different perspectives, which include:

A comparison between peak-hour and off -peak-hour accident rates, to determine

if congestion has an impact on the resulting accident rate. As reported in the
previous chapter, congestion on freeways and arterias exhibits a positive
correlation with accident frequency, however the relationship with accident rate
will betested in this chapter.
A cross-section comparison of accident rates on five sample local arterials and
freeway segments was performed to evaluate whether roadways with higher levels
of congestion yield lower accident rates.
Testing the potential correlation between accident rate and volumes per lane,
which isused as the surrogate variable for congestion level.

Theresults of above three exploratory analyses are presented in sequence below.

Comparison of accident ratein peak hoursand in off-peak hours
Figure 4-1 presents the differences between peak and off-peak hour accident rates on

five sample arterials, and Figure 42 illustrates the results for five sample freeway
segments. On 75 of the 129 arterial links shown in Figure 4-1, accident rates during off-
peak hours are higher than accident rates during peak hours. On the remaining links,

accident rates during off-peak hours are equal to or lower than accident rates during peak
hours. On more congested links (e.g. links 410 of MD335), accident rates during peak

hours are significantly higher than accident rates during off-peak hours.
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In comparison, it was also observed on 85 of the 179 freeway links, that the accident
rates during off-peak hours were higher than accident rates during peak hours. On the
remaining links, accident rates during off-peak hours were equal to or lower than accident
rates during peak hours. For example, on 13 of thefirst 21 links of 1-270 and on 28 of the
39 links of 1-695, the accident rate during peak hours is higher than the accident rate
during off-peak hours.

These two observations imply that critical factors other than congestion may have a
significant impact on the accident rate and that the volume per lane may not be sufficient
to fully capture the impact of congestion on accident rate. It is aso likely that the
relationship between accident rate and volume per lane may vary with volume level. For
example, the relationship may differ from peak to off-peak hours on either freeways or
arterials. In summary, the results d this anaysis offer no definitive answer to the
relationship between accident rate and congestion; however, it does establish the basisfor

further explorationsin the ensuing sections.
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Figure4-1 A comparison of accident rate on five arterials during peak and off-
peak hours
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Figure4-2 A comparison of hourly accidents on freeways during peak and off-
peak hours
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To further compare the peak-period accident rate with the off-peak accident rate for

all sample freeways and arterias, this study has employed the following test (Greene,
2000) on the available dataset and the results are shown in Table 4-1.

Table4-1 Procedures and results of the dummy variable method (Greene, 2000)

i H;: Accident rate (peak) > Accident rate (off-peak)
Hypothesis
i.eeHo:d=0;H1:d>0
y, =m+d * Dum+e,
Testprocedures | o pym 1, if the sampleisin peak period
= 0, otherwise
Accident rate during peak hours (7-9AM and 4-6PM)
Data used ) )
Accident rate during off-peak hours
Test results of five sample surface streets
Route Name MD2 MD355 USl MD410 MD97
Sample Size (n) 32 25 29 18 25
T-statisiic of 1750 | 0745 0.396 0.203 -1.166
Dumcoefficient
T2n2(0.95) 1.669 1.676 1672 1.688 1.676
Conclusion Accept Ho | Accept Ho | Accept Ho | Accept Ho | Accept Ho

With respect to all five ssmpled arterials, Table 41 illustrates that it cannot be

concluded that the average accident rate during the peak period is higher than the

accident rate during the off-peak period. The same conclusions for freeways can be

reached basedon the test results reported in Table 4-2. For example, negative parameters

for 1-695 tend to indicate that the average accident rate during peak hours is lower than

the average accident rate during off-peak hours.
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Table4-2 Results of the dummy variable test for freeways

Test results of five sample freeway segments
Route Name 1-495 1-695 1-95 1-270 US50
Sample Size (n) 18 39 59 49 14
T-statistic of 0071 2427 0.854 0.778 0.286
Dumcoefficient
Ton2(0.95) 1.669 1.665 1.658 1.661 1.701
Conclusion Accept Hg | AcceptHg | Accept Hg | Accept Hg | Accept Hg

In summary, the inconclusive results illustrated in Table 4-2 indicate that additional
factors need to be considered when exploring the complex interactions between accident

rate and congestion.

Cross-section comparison of the accident rate

As stated previously, the following analyses were designed to test whether more
congested highways experience lower accident rate and whether a systematic relationship
between accident rate and congestion exists. Since al five freeways and arterials
experienced different levels of congestion, one may expect that they should exhibit
significantly different average accident rates.

Table 43 summarizes the results of ANOVA tests for the sampled arterials and
freeways. As expected, the accident rate varies significantly among the five arterials with
different volumes per lane during peak and off-peak periods. With respect to freeways,
the test results indicate that a distinct difference during peak-hour accident rate among
five sample freeways exists. However, the test also indicates that the off-peak accident

rate does not vary significantly among the sampled freeways.
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Table4-3 ANOVA tests and results

Balanced ANOVA test for arterias
Hypothesis | The average accident rates for all five arterials are statistically equal.

ANOVA test | The number of factor levels (treatment groups): k=5
parameters | The number of observationswithin each factor level: n= 18
Accident rate in peak hours (7-9AM and 4-6PM)

Dataused
Accident ratein off peak hours
Test results from the arterial dataset
Dependent Variable Y F ng?s Conclusion
1 Peak-hour accident rate 3.06 2.48 Reject
2 Off-peak accident rate 5.91 2.48 Reject

Unbalanced ANOVA test for freeways

Hypothesis | The average accident ratesfor all five freeways are statistically equal.

The number of factor levels (treatment groups): k=5

ANOVA test _ o

The number of observationswithin each factor level:

parameters
n; = {18, 39, 59, 49, 14}

Accident rate during peak hours (7-9AM and 4-6PM
Dataused 9gp ( )

Accident rate during off peak hours

Test results from the freeway dataset
Dependent Variable Y F Fres Conclusion

1 Peak-hour accident rate 411 242 Reject
2 Off-peak accidents rate 0.93 2.42 Accept
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Bivariate correlation test between the accident rate and congestion level

Figures 43 and 44 present the relationship between volume per lane and the
resulting accident rate on each link for the sample freeways and arterials. These graphical
relationships reveal two important factors:

The accident rate does not exhibit any distinct trend with volumes per
lane.

Increasing the variance of the exhibited data patterns does not support the
use of linear multivariate regression for further analyses.

Based on this information, the use of Poisson and Negative Binomial regressions for
accident rate analysis should be examined, as these statistical models are more accurate
when there is a better account for the non-linear and non-negative nature of accident rate
data.
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Figure4-3 A graphical illustration of accident rate versus corresponding volume
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Figure4-4 A graphical illustration of accident rate versus corresponding volume
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4.4 Model estimation for arterials

Thereare avariety of factorsthat may contribute to the variation of the accident rate.
The previous exploratory analysis using asingle factor may not be sufficient to render an
“unbiased” picture of the relationship between the accident rate and congestion level.
Therefore, this section attempts to further investigate any potentia relationships using
multivariate statistical methods, including Poisson and Negative Binomial regressions.
The set of variablesto beincluded in the model estimation are listed below:

The dependent variable: the accident rate in peak or off-peak hours.

The set of independent variables:

o X;: Annual average volume per hour during peak and off-peak periods
o Xz2: Median type (divided or not)

O Xxa: Intersection density = Number of intersections/ Link length

o X4 Link length

a Xxs: Number of through lanes per link

The correlation matrix of the independent variable (see Table 4-4) makes it clear that
the number of intersections and the length of roadway links are highly correlated (the
correlation coefficient is 0.414). The analysis uses the intersection densty (i.e., the
number of intersections divided by the link length) as one of the explanatory variables in
the model estimation. There is also a high correlation between the number of through
lanes and median type or section length. These correlations come from the design
properties and the link-clustering operations. For example, divided-median roadway links
are usually associated with a higher number of through lanes than undivided-median

roadway links, which explains the positive correlation between thesetwo variables.
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Table4-4 Correlation matrix for candidate variables

Y Acci dent rate
x_1 Vol ume per | ane
X_2 Di vi ded nmedi an or not
x_3 Nurmber of intersections
x_4 Length of the roadway |ink
x_5 Nunber of through | anes
Correlation Matrix

Y X 1 X 2 X_3 X 4
Y 1. 00000
X1 - 0. 08589 1. 000000
X 2 0. 26387 -0.011310 1. 00000
X 3 0.16687 0. 055620 -0.07749 1. 00000
X 4 - 0. 38058 -0. 027073 -0. 20435 0.41339 1. 00000
X5 0.57783 -0. 018155 0. 46278 0. 00981 -0.43354

Estimation method
The Poisson regression is recognized as one of the most effective methods for
examining accident related data. A concise presentation of the Poisson regression
algorithm can be found in Appendix1. When using Roisson regression, it is important
that the Lagrange Multiplier Test for overdispersion also be conducted. If the over-
dispersion is found to be significant in the estimated results, it is suggested in the
literature that Typel Negative Binomial model or Typell Negative Binomia model
should be used. The fundamental assumptions for Type-1 and Type-ll Negative Binomial
models are summarized below:
Type | Negative Binomia model assumes the following relationship between
mean and variance: E[y] =exp (X* b) =
Variance[y] =p* (1 +a)
Type Il Negative Binomial model assumes the following relationship between
mean and variance:  E[y]=exp (X * b) =u

Variance [y] = p+ a*p?
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Model estimation results
A total of 15 model specifications were estimated with Poisson regression (see Table
4-5). Among those, the specification shown in Table 46 best illustrates the relationship

between accident rate and congestion.

Table4-5 List of estimated models

Functional form Number Estimation
of models method
Y =bo+b1 X1 1 Poisson
Y =bo+by X3 +b3 X, i=2,...,5 4 Poisson
Y =bo+by X1 +bo X; +b3 X,i=2,...4,j=2,...,5, i 5 Poisson
Y =bo+hb Xy +b2Xi +bs X +ba Xk, i=2,3,j=2,3,4, 4 Poisson
k=2,...,5,i<j<k
Y =bg+b; Xi+baXs +b3 X3 +bs X4 +bs X5 1 Poisson
Total 15
Table4-6 Model estimation resultsfor arterials
Parameter Estimate t-statistic P-value
C 7.268 35.844  [.000]
x1 (Volume per lane) -.048 -2.438 [.015]
X, (Median Indicator) 139 1.733 [.083]
x3 (Intersection density) .020 6.995 [.000]
X4 (Link length) -.225 -4.274 [.000]
xs (Number of thru lanes) 325 10.321  [.000]
Over-dispersion test result
Chi-Squared statistics P-value
0.348 [.555]

-49-



From the estimation results listed in Table 46, the following conclusions were
reached:

The accident rate for local arterials tends to decrease with the volume level.
The coefficient of the median indicator is positive and significant, which
suggests that divided roadway links exhibit higher accident rates than
undivided roadway links with the same volume levels. This may be due to the
higher speed on the divided roadway links or other factors that have not been
identified.
The accident rate increases with intersection density (number of intersections
per unit length of the roadway link).
The accident rate on arterial links increases with the number of through lanes.
More through lanes indicate that potential lanechanging maneuvers on the

roadway link may contribute to an increase in the accident frequency and rate
at the same volume levels.

To eliminate the potential biases due to the link partitioning process, this study also
used the original (not clustered) link dataset to perform the model estimation. Estimation
results of the Poisson regression model with the original (not aggregated) dataset (1366
links in total) are listed in Table 47, note that the volume per lane is a significant
variable and has a negative coefficient. The divided median has a significant positive
coefficient, which implies that the accident rate tends to be higher on a divided roadway
link than on an undivided roadway link.

-850 -



Table4-7 Poisson model for the original arterial links

Parameter Estimate t-statistic  Pvalue
C 461215  36.7155  [.000]
VOLUME -085300 -3.37066 [.001]
MEDIAN 327695 2.96343 [.003]
INTDENSITY .027944  8.52762 [.000]
Over-dispersion test result
Chi-Squared statistics P-value
502 [.478]

Stability test results
Number of coefficients: K = 4
Number of observationsin subset-1: n; = 670

Number of observations in subset-2: n, = 696

Residual sum of squares (scaled by 10™°):
A € =82181205; § & = 38220845 ; § € = 43787362

Theresulting F statisticsis 0.68 < F 0.95(4,1358) = 2.37
Therefore, the Poisson model is stable

Since the over-dispersion test statistics are not significant for the previous models
(see Table4-7), it is not necessary to perform the Negative Binomial model estimation.

To ensure that all estimated parameter signs are independent of the difference in
sample size, a standard parameter stability test was also performed. The primary
procedures are summarized in Appendix-2, and test results (see Table 47) clearly
indicate that the estimated relationship between accident rate and key factors is stable,
and will not vary with sample size. f the same analysis is conducted using a larger

dataset the results conclusion should be identical to those reported in this section.
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4.5 Model estimation for freeway segments

Using the same estimation algorithm, this section eplores the relationship between
the accident rate and the congestion level on freeways. Variables to be included in the
model estimation are as follows:

The dependent variable (Y): the accident rate during peak or off-peak hours.
The set of independent variables:

a X : Volume per lane

O X : Medianwidth

o x: Auxiliary laneratio

thetotal length of auxiliary lanesonalink

Auxiliary laneratio = -
thelength of thelink

a X : Link length
a X : Number of through lanes

Estimation results
A total of 15 model specifications with different variables were tested using Poisson

regression (see Table 4-8).

Table4-8 List of estimated models

Functional form Number Estimation
of models method
Y =bo+by X; 1 Poisson
Y:bo+b1X1+b2Xi,i:2,...,5 4 Poisson
Y =bg+by X1 +bo X; +b3XJ,i=2,...,4,j=2,...,5,i<j 5 Poisson
Y=bo+b X1+b2Xi +b3X +DbaXk, 1=23,j=2,3,4, 4 Poisson
k=2,...,5,i<j<k
Y=bo+bi1 X1+b2X2 +b3 X3 +bs X4 +bs X5 1 Poisson
Total 15
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With both peak hour data and off-peak hour data, the most onsistent estimation
results from these Poisson models are listed in Table 4-9. Note that for volume per lane

the variable was not significant but did have a positive coefficient.

Table 4-9 Estimation results with Poisson regression for freeways

Parameter Estimate t-statistic ~ P-value
C 5.81252 28.0219 [.000]
% (volume per lane) J1140E-03  1.08253 [.279]
% (median width) -1358E-02 -1.40470 [.160]
x3 (auxiliary lane ratio) 142474 1.87529 [.061]
X5 (# of thru lanes) -.064002 -3.12061  [.002]
Over-dispersion test result
Chi-Squared statistics P-value
167 [.683]

To further investigate the impact volume per lane has on the accident rate, this study

divided the freeway dataset into peak
independently using Poisson regression.

and off-pesk subsets, and estimated each
Table 410 and Table 411 present the most

consistent estimation results of the Poisson models from these two subsets. Note that

although the parameter for volume per lane remains insignificant in both models, the
statistical significance level indicates that the impact of peak hour volume on the accident

rate should be examined further.
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Table4-10 Estimation results with Poisson regression for the peak-hour freeway
dataset

Parameter Edimate t-statistic  Pvalue
C 5.49095 16.0450 [.000]
% (volume per lane) 29446E-03 156221  [.118]
% (median widith) -25313E-02 -1.78660 [.074]
X (auxiliary laneratio)  .182054 1.66505  [.096]
X5 (# of thru lanes) -.057942 -2.25588  [.024]
Over-dispersion test result
Chi-Squared statistics P-value
131 [.718]

Table4-11 Estimation results with Poisson regression for the off -peak-hour freeway
dataset

Parameter Esimate t-statistic ~ Pvalue
C 574487 147920  [.000]
X (volume per lane) .026450  .858914  [.390]
% (median width) -5371E-03 -.401647 [.688]
x (auxiliary laneratio) .084449 783483  [.433]
X5 (# of thru lanes) -064892 -1.95222 [.051]
Over-dispersion test result
Chi-Squared statistics P-value
.006 [.940]

The results also show that the t-statistic of volume per lane in Table 4-10 is 1.56 and
is close to the significance boundary. In addition, the mean and variance of accident rate
(scaled by 10°) are 24.9 and 428.18 (aratio of 0.058), which suggests the need to use the
Negative Binomial regression models.

In Table 4-12 the estimation results with NB1 regression were based on the off-peak

data. The variable of volume per lane remained insignificant. However, it is important to
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note that the volume per lane that represents the congestion level exhibits a significant
sign when the NB1 model is estimated with the peak-hour dataset (see Table 4-13).

Table4-12 Estimation results with NB1 for the off-peak-hour freeway dataset

Parameter Esimate t-statistic Pvalue
C 3.27640 111825  [.000]
% (volume per lane) .028692 1.16502  [.244]
¥ (median width) -9382E-03  -1.14488 [.252]
X3 (auxiliary laneratio) .066380 783986  [.433]
x5 (# of thru lanes) -.040057 -1.50911 [.131]
a 12.0517 8.11631  [.000Q]

Table4-13 Estimation results with NB1 for the peak-hour freeway dataset

Parameter Edimate t-statistic  Pvalue

C 3.01253 9.11135 [.000]
X1 (volume per lane) .037621 2.31598 [.021]
x> (median width) -442367E-02 -3.41930 [.001]
X (auxiliary laneratio)  .062311 .648298 [.517]
x5 (# of thru lanes) -.031555 -1.08130 [.280]
a 16.3193 7.62379 [.000]

Table 4-13 summarizes the estimation results for the NB1 model based on the peak-
hour freeway accident data where both the volume per lane and the median width had
significant impacts on the accident rate. In contrast, none of these candidate variablesin
the off-peak model revealed any significant signs. Therefore, the following tentative
conclusions regarding the relationship between accident rate and congestion can be
reached:

Accident rate on freeways seems to increase with traffic volume during peak
hours.

Wider medians can significantly reduce the accident rate on freeways.
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Accident rate on freeways during off-peak hours tends to be independent of

traffic volume levels.
As shown in Table 413 (NB1 model), the relationship was evaluated using the

stability test. The stability test results indicate that the reported relationship between

accident rate and key factorsis stable and does not vary with sample size.

4.6 Summary and Conclusions

Chapter 4 attempted to explore the relationship between accident rate and congestion
level on sampled freeways and arterials. The investigation of this relationship includes
exploratory analyses and multivariate model development using the Poisson and Negative
Binomial regressions. The resultsindicate the following:

For arterials, the accident rate tends to decrease as the volume increases.

For freeway segments, the accident rate during off-peak hours appears to be
quite random, exhibiting no systematic relation with the traffic volume.

During the peak-congested period, accident rates on freeways appear to
increase significantly with traffic volume.

Divided arteria links generally exhibit higher accident rates than undivided
arterial links at the same volume level.

Wider medians on freeways can significantly reduce the accident rate.

The accident rate on arterialsislikely to increase with intersection density.
Anincrease in the number of through lanes may cause a significant increasein

the accident rate on arterials.
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CHAPTERS
ACCIDENT SEVERITY AND CONGESTION LEVEL

5.1 Introduction

This chapter examines the relationship between accident severity and congestion
level. The focus of this chapter is to examine the common belief of many traffic safety
professionals that accident severity on freeways or arterials decreases with congestion
because of the high traffic volumes and reduced flow speed.

An exploratory analysis was conducted to identify potential factors associated with
accident severity such as accident location, roadway geometry, and driver conditions.
This was followed by an aggregated analysis of the relationship between the number of
accidents in each severity level and congestion level on sample freeways and arterials.
Based on the results of the exploratory analysis, a final examination using the Ordered
Probit models was conducted to estimate the relationship between accident severity and
the identified key variables. It was anticipated that hourly volume per lane, the surrogate
variable for the congestion level, would have a negative coefficient in the estimation
resultsif more accidents occurred during periods with higher congestion levels.

Chapter 5 provides a description of the sample data and the severity classificationsin
Section 5.2 and 5.3. Section 5.4 presents the exploratory analysis results for the arterial
and freeway databases. Section 5.5 provides the aggregated analysis results illustrating
the relationship between accident severity and congestion levels. Applications of the
multivariate model for estimating the relationship between accident severity and all

associated factors, along with the research results, are presented in the last two sections.
5.2 Data Available for Analysis
The accident information records from the MAARS contain a comprehensive set of

accident data for analysis, including the injury severity of the drivers/occupants, the
number of persons injured, weather conditions, visibility condition, road surface
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condition, collision type, and the location and the time of each accident. However, the

traffic volume during the time of each accident is not recorded in the MAARS database.

As described in earlier chapters, the highway information system from Maryland

State Highway Administration providestraffic and geometric information associated with

most arterials and freeway segments. After integrating these two databases with accident

location information, it becomes easier to obtain the AADT and geometric information
related to each recorded accident.
The analyses reported in the remainder of this chapter are based on the individual

accident data points recorded in Year 2000 for five arterials and five freeway segments
(seeTable5-1).

Table5-1 Accident dataset for analysis

4542 accident datafrom the surface

5402 accident data from the freeway

street dataset segment dataset
Sample
Year 2000 2000
Source | Road . Road .
Index | name Segment location name Segment |ocation
1 UslL Between Baltimore City Line 1-495 Between Virginia State Line and
and Washington DC Line 1-95 Exit 27
2 MD2 The entire length 1-270 The entirelength
3 MD97 The entire length 1-695 The entirelength
4 |MD355 The entire length .95 | Between Baltimore City Line
and Virginia State Line
5 | MD410 The entire length usso | Between Washington DC Line

and Bay Bridge

Severity classification

Table 52 presents two classifications for accident severity by the Maryland State

Highway Administration (SHA). In analyzing the severity data, this study employed the

five-level accident severity classification by the SHA, which includes property damage
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only, possible injury, capacitating injury, non-capacitating injury, and fatal. Since the
category of “possibly injured” has not been clearly defined, this study has also explored
the impact of grouping “possibly injured,” either with “injured” or “not injured” on the
estimated results. The models reported in later sections were estimated to determine the
relationship between accident severity and congestion under various scenarios of data
aggregation and classification. Also note that the probable under-reporting of property

damage only accidents exists due to the decreasing police response to such accidents.

Table5-2 Severity classification

For Accidents For Drivers/Occupants/ Pedestrians
1. Property Damage Only 1. Not injured (Property damage only)
2. Injury 2. Possibly injured
3. Fatal 3. Injured (Capacitating injury)

4, Disabled (Non-capacitating injury)
5. Fatal

5.3 Exploratory Analysis for the arterial database

An exploratory analysis was conducted to identify variables for further econometric
model development, and includes a comparison of accident frequency at various severity
levels for each potential contributing factor. Based on the differences in key
characteristics, alist of candidate exploratory variables was dassified into the following
three groups.

Roadway geometric and weather condition variables:
o0 Mediantype (divided or not)
0 Number of through lanes
0 Intersection or not
o Work zone or not
0

Weather conditions (e.g., rain, snow)
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Traffic condtionvariables:

0 Traffic composition

o0 Annual Average Hourly Volume (per lane)
Driver condition variables:

o Drinking alcohol or using drugs
Preliminary comparisons of accident severity distribution, classified with the above list of

critical variables are presented in the sequence below:

Peak hourd off-peak hours (for arterials)

Figure 51 and Table 53 summarize the comparison results for accident severity
distributions between peak and off-peak hours. The accident severity distribution exhibits
a similar pattern between peak hours and off-peak hours, where the percentage of
accidents decreases with the severity level.

Figure 5-1 The accident severity distribution in peak and off-peak periods on
arterials

66

56

49

36

Percentage

26

NN N NN

16]

1 2 3 4 5
3 Peak

Off_peak

Severity Level

-60 -



Table5-3 Distribution of arterial accidents by severity in peak and off-peak periods

Aggregated by Severity Total
Peakhourornot 17" 0T eve-2 | Level-3 | Levd-4 | Level-5
#0f accidents 648 217 216 85 6| 17
Peak
Percentage 55.3 185 184 73 0.5 100
off. | #ofaccidents | 1850 630 562 307 21 3370
Peak Percentage 54.9 187 16.7 91 0.6 100

At intersection/ not at intersection

Similar to the previous analysis, this comparison was performed to evaluate the
severity distribution of accidents that occurred at intersections with those at roadway
segments. The primary concern is to identify if the location, such as intersection, plays
any significant role in the resulting severity the accident. Figure 52 and Table 54
present the comparison results of the accident severity distribution between accidents that

occurred at intersections and those that occurred at non-intersection locations.

Figure5-2 A comparison of the severity distribution of accidentsthat occurred at
i ntersections and non-intersection locations
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Table5-4 Distribution of accidentsby severity at intersectionsor non-intersection

locations
Aggregated by Severity Total
At-intersectionornot I ooy 11| evel-2 Level-3| Level-4] Level-5
At # of accidents 802 275 295 164 g 1544
Intersection Percentage 51.9 178 19.1 106 0.5 100
Not at # of accidents 1696 572 483 228 19 2998
Intersection percentage 56.6 191 16.1 76 0.6 100

Accordingly, given that an accident already happened, the probability of having the

accident at different levels of severity are summarized asfollows:

Property damage only injury fatality
I ntersection 0.697 0.297 0.005
Non-intersection 0.757 0.237 0.006

The probability of having an accident that resultsin “injury” at intersections is about

0.297 and higher than the probability at non -intersection locations. Thisis consistent with
the finding that accidents occurred at non-intersection locations are more likely to be at

the level of property damage only (0.757 vs. 0.697).
Weather conditions

Figure 53 and Table 5-5 present the impact of weather conditions on the distribution

of accident severity.
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Figure5-3 The severity distribution of arterial accidents under various weather
conditions

Percentage

Table5-5 Distribution of arterial accidentsby severity under various weather

@ Clear/Cloud

Foggy
o Raining

3

O Snow/Sleet

Severity Level

conditions
Aggregated by Severity Total
Weather condition || ey 1 | Leve-2 Level-3| Level-4 | Level-5
Clear/ # of accidents 1964 653 627 305 23 3572
Cloudy |percentage 55.0 183 176 85 0.6 100
# of accidents 14 6 6 1 Qg 27
Fogay
Percentage 51.9 22 22.2 37 0.0 100
. # of accidents 471 182 138 82 3 876)
Raining
Percentage 53.8 208 158 94 0.3 100
Snow/ # of accidents 42 6 7 1 g 56
Sleet | percentage 75.0 107 125 18 00| 100

By using the clear/cloudy condition as a base for comparison, the rain condition has

no distinct impact on accident severity; however, the snow condition often resultsin more

accidents at lower severity levels.
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In work-zone or not (for arterials)

Figure 5-4 and Table 56 illustrate the comparison results for accident distribution by
severity in and not in workzones. Since work-zone safety has long been a primary
concern in traffic operations, it is essential to know if work-zone operations have an
effect on the severity of accidents.

Figure5-4 The distribution of arterial accidents by severity for those in work
zones or hon-work-zone locations
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Table5-6 Distribution of arterial accidents by severity in work-zones or non-work-
zone locations

Aggregated by Severity Total
Inwork-zoneornot "o o T evel-2 Level-3| Level-4] Level-5
In # of accidents 57 26 17 11 Q 111
Work-zone{ percentage 51.4 234 15.3 99 00| 100
Notin |#ofaccidents| 2441 821 761 381 21l 4431
Work-zone| percentage 551| 185 172 86 06| 100

The preliminary statistics indicate that work-zone operations may not be a significant
contributor to accident severity. For example, the probability that an accident will occur

at the level of “property damage only” is 0.514 in work-zones, compared to 0.551 when
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in non-work-zone locations. The total percentage of accidents at the first two severity

levelsis 53.8% in work-zones and 53.6% for those in non-work-zone locations.

Median type
Figure 55 and Table 57 present the distribution of accidents by severity level for

those that occurred on divided and undivided highway segments. The analysis indicates
that the existence of highway medians may not reduce accident frequency, but do

contribute to the improvement of safety.

Figure5-5 The severity distribution of arterial accidents on arterials with various
median types
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Table5-7 Distribution of arterial accidentsby severity on arterials with various

median types
Aggregated by Severity Total
Mediantype Leve-1| Levd-2 Leve-3| Level-4] Level-5
Not # of accidents 946 293 264 142, 14 1659
Divided | percentage 570 177 159 86 08| 100
#of accidents| 1465 520 488 236 12| 2730
Divided
Percentage 537| 194 179 86 04| 100
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The statistics summarized in Table 57, however, do not provide a definitive answer
regarding the impact of median typeon the accident severity, which indicates the need to

explore the compound impacts of other contributing factors.

Driver conditions

Figure 56 and Table 58 illustrate the results of a comparison of the number of
accidents and their distributions at different severity levels under the following three
categories of driver conditions: apparently normal, had been drinking, and other
abnormal conditions (e.g. using drugs or having physically defects).

Figure5-6 The severity distribution of arterial accidentsfor drivers under various
conditions

Percentage
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Table5-8 Distribution of arterial accidentsby severity for driversunder various

conditions
Aggregated by Severity Total
Driver condition Leve-1| Levd-2 Level-3[ Level-4] Level-5
Apparently|# of accidents 1926 881 839 400 2 4071
Normal | percentage 47.3 216 20.6 98 0.6 100
Had been |# of accidents 120 61 47 31 1 260
drinking | Percentage 46.2 235 18.1 119 0.4 100
Other # of accidents 19 8 5 12 6 50
abnormal | percentage 38.0 16.0 100 240 120 100

Based on above statistics, one may reach a tentative conclusion that drivers are more

likely to experience severe accidents if they are under the influence of alcohol or are

affected by other abnormal variables (e.g. drugs, physical defects).

Similar exploratory analyses were conducted using visibility condition (daylight,

dawn/dusk, dark-lights on, dark- no lights), the number of through lanes, and collision
type (head on, rear end, sideswipe, etc.), as exploratory variables. However, the

preliminary results indicated that none of these factors exhibited a significant impact on

accident severity. Therefore, the following factors were included in the estimation of the

rel ationship between congestion and accident severity on arterials:

M edian type (divided or not)

At an intersection or not

In awork zone or not

Weather conditions (Snow/Sleet and Fog)
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5.4 Exploratory Analysisfor the freeway database

A preliminary set of variablesfor analysis are summarized below:
Roadway geometric and weather condition variables:
0 Number of through lanes
o Work zone or not
0 Auxiliary laneratio

thetotal length of auxiliary lanesonalink
thelength of thelink

Auxiliary laneratio =

0 Weather (rain, snow, or other conditions)
Traffic condition variables:

0 AADT, and Peak-hour volume

o0 Annual Average Hourly Volume (per lane)
Driver condition variables:

o Drinking alcohol or using drugs

Peak hourd off-peak hours (for freeways)
Table 59 summarizes the distribution of accidents by severity during peak and off-

peak hours. The severity distribution patterns for peak and off-peak periods exhibit no

significant differences for selected freeways.

Table5-9 Distribution of freeway accidents by severity in peak and off-peak periods

Aggregated by Severity Total
Peakhourornot || ael 1| Level-2 | Level-3| Leve-4 | Level-5
Peak # of accidents 897 283 203 117 6 1506
Percentage 59.6 188 135 78 04 100
off. | #0f accidents 2264 654 595 353 30| 389
Peak | percentage 58.1 168 153 9.1 058 100
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Weather conditions
A preliminary exploration of potential weather impacts on the severity of accidentsis
presented in Table 510. Based on the results reported in the statistical summary, snow

conditions tend to cause less severe accidents despite the fact that it is likely that during
these conditions more accidents occur. For example, an accident that occurs on a day

when it is snowing has a 0.738 probability to reach Level-1 severity (property damage
only).

Table5-10 Distribution of freeway accidents by severity under various weather
conditions

Aggregated by Severity Total
Weather condition  T'"o 1 T evel-2 Level-3| Level-4] Level-5
Clear/ # of accidents 2559 768 660 397 3| 4418
Cloudy | percentage 579 174 147 9.0 0.9 100
# of accidents 16 3 6 3 q 33|
Foggy
Percentage 57.1 10.7 21.4 10.7] 0.0 100
. # of accidents 472 148 121 61| 1 803
Raining
Percentage 58.8 184 15.1 7.6 0.1 100
Snow/ # of accidents 96 14 11 9 Q 130
Sleet Percentage 73.8 10.8 8.5 6.9 0.4 100

In work-zone or not in work -zone

Table 511 summarizes the differences between accident distribution by severity for
accidents that occurred in work-zones and on normal freeway segments. The preliminary
statistics reported tend to offer no definitive conclusion regarding the potential impactsof

work-zone on accident severity.

-69 -



Table5-11 Distribution of freeway accidents by severity within and beyond work-

Zones
Aggregated by Severity Tota
Inwork-zoneornot 1\ oo 1 T evel-2 Level-3[ Level-4] Level-5
In # of accidents 68 22 19 18 g 127
Work-zone| percentage 53.5 17.3 15.0 14.2 0.q 100
Not in # of accidents 3093 915 779 452, 3q 5275
Work-zone| percentage 58 173 148 8.6 0.7 100

Driver conditions

Similar to the analysis of accidents on arterials, Table 5-12 presentsthe distribution of

accidents by severity and by driver condition. In the MAARS accident database, all

drivers involved in accidents are classified in one of the following groups: normal, had

been drinking, and other abnormal states such as using drugs. The distinct differencesin

the resulting severity are proven by the statistics illustrated in Table 5-12. For example,

drivers under abnormal conditions, excluding those that “had been drinking,” have about
a 0.138 probability to be involved in an accident that results in fatalities (Level-5). This

is compared to only 0.005 of drivers who have accidents under normal conditions.

Therefore, it is likely that driver conditions are a significant factor in the severity of

accidents and should be included in further statistical analyses to determine the

relationship between congestion and accident severity.
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Table5-12 Distribution of freeway accidents by severity and drive conditions

Aggregated by Severity
Driver condition Total
Level-1| Level-2 Level-3| Level-4| Level-5
Apparently # of accidents 2471 989 866 400 25 4751
Norma | percentage 52z 208 182 8.4 0.5 100,
Had been |# of accidents 205 49 38 34 4 330
drinking | percentage 62.0 148 11§ 10.3 1.2 100
Other # of accidents 46 2 5 3 9 65|
abnormal | percentage 70.8 31 7.7 46 138 100

The following factors were also examined to determine their impacts on the

distribution of freeway accidentsby severity.

Visibility condition (daylight, dawn/dusk, dark-lights on, dark- no lights)

The number of through lanes

The number of vehiclesinvolved

Callision type (head on, rear end, sideswipe, etc.)

The existing dataset provides no indication of the impacts these factors have on the

accident severity distribution. Therefore, they are not included in the advanced statistical
estimation provided in Section 5.6 and 5.7.

5.5 Relationships between AADT and accident severity

This section analyzes the aggregated relationship between AADT and accident

severity, to evaluate whether the percentage of severe accidents reveals a decreasing

trend with the level of congestion (represented wth the volume per lane), if more

congested traffic conditions will result in less severe accidents as expected. Figures 57

and 58 present accident distribution by severity under different AADT levels on local

arterialsand freeways.
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Figure5-7 Percentage of accidents at each severity level vs. AADT per lane from

thelocal arterial dataset
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The statistical trends illustrate that the percentage of accidents at the lowest severity
level tend to increase with the AADT per lane on both freeways and arterials. In contrast,
the percentage of accidents at severity levels 24 exhibits a decreasing trend with the
AADT per lane. These results, despite their preliminary nature, tend to offer supporting
evidence regarding the general perception that accidents that occur during more
congested traffic conditionstend to be at aless severelevel.

Since Levd-2 severity, “possible injuries’, is not rigorously defined, the following
multivariate statistical estimation was used to explore the effectiveness of reclassifying
the severity level with different data aggregations. A list of these candidate data sets after
reclassification is presented bel ow:

Property damage only, possibleinjury, injury, disabled, and fatal. (5 levels)
Property damage only, injury, and fatal. (3 levels)
0 1, 2+3+4, 5
0 1+2, 3+4, 5.
Injury, disabled, and fatal. (3 levels)
0 2,3+4,5
0 2+3,4,5
0 2,345
Sections 5.6 and 5.7 present the investigation results regarding the relationship between
accident severity and contributing factors on both freeways and arterials using the
previousdatasets.

5.6 Modd Estimation for Arterials

This section presents the statistical method used to estimate the relationship between
accident severity on arterials and primary contributing factors, especialy the volume per
lane that is used asthe surrogate variable for congestion.

The dependent variable (i.e. severity level) is discrete and inherently ordered in
nature, therefore, the traditional discrete choice models, such as multinomial logit or
probit models will not be sufficient to account for the embedded ordina relationship.
Thus, the remaining estimation uses the Ordered Probit Model (Greene, 2000) to explore
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the relationships of interest. Both the arteria dataset (containing 4518 individual
accident cases) and the freeway dataset (containing 4868 individual accident cases) are
sufficiently large for assuming that the disturbance terms are jointly normally distributed.

Core concepts of the ordered probit model
The ordered probit model is grounded on the following latent regression:
y =bx+e
Where, y* isunobserved. What we do observeis:
y =1lify* <=0
=2if0<y* <=pl
=3iful<y* <=p2
=4if u2<y* <=3
=5if u3<y*
ul, 42, and pu3 are the unknown parameters to be estimated with 3
Prob(y=1) =cnorm(0 —3x) —0
Prob(y=2) = cnorm(j1- 3 x) - cnorm(0 — 3X)
Prob(y=3) = cnorm(u2- 3 x) - cnorm(ul- 3'x)
Prob(y=4) = cnorm(u3- 3 x) - cnorm(u2- [3'x)
Prob(y=5) = 1- cnorm(u3- 3'x)
For all the probabilitiesto be positive, we must have
0 < pl<p2< p3

Figure 5-9 shows the implications of the structure.
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Figure5-9 Cumulative probabilitiesin the Ordered Probit Model
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One can congtruct the log-likelihood function and compute its derivatives with

standard methods.
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Model estimation results
Table 513 summarizes the list of probit models estimated using the TSP4.5 software
(Hall and Cummins, 1999).

Table5-13 A list of estimated severity models for arterias

SﬁﬂVﬁggelaeévY? s Dataset Independent variables
AADT per lane, peak-hour indicator,
Model-1 | (1, 2, 3,4, 5) |All available data| intersection indicator (X2), weather (Xs),
median typeindicator (Xa)
Model-2 | (1, 2, 3,4,5) |All availabledatal] Hourly volume per lane, X3, X3, X4
Model-3 | (1, 2,3, 4,5 | Weekday data Hourly volume per lane, Xz, X3, X4
Model-4 | (1, 2+3+4,5) |All availabledatal] Hourly volume per lane, Xy, X3, X4
Model-5 | (1, 2+3+4,5) | Weekday data Hourly volume per lane, Xz, X3, X4
Model-6 | (1+2, 3+4,5) |All availabledatal Hourly volume per lane, X5, X3, X4
Model-7 | (1+2, 3+4,5) | Weekday data Hourly volume per lane, Xp, X3, X4
Model-8 (2,3,4,5 |All availabledata] Hourly volume per lane, X3, X3, X4
Model-9 (2,3, 4,5 Weekday data Hourly volume per lane, Xz, X3, X4
Model-10| (2+3,4,5) |All availabledata] Hourly volume per lane, Xz, X3, X4
Model-11| (2+3,4,5) Weekday data Hourly volume per lane, X5, X3, X4
Model-12| (2, 3+4,5) |All availabledata] Hourly volume per lane, Xz, X3, Xa
Model-13| (2, 3+4,5) Weekday data Hourly volume per lane, Xz, X3, X4

Of the 13 types of data aggregations presented in Table 5-13, the following 4 models

illustrate a better consistency on the relationship between severity level and the

associated variables.
Model-2: All five levels
Model-6: 3 levels (1+2, 3+4, 5)
Model-8: 4 levels (2, 3, 4, 5)
Model-10: 3 levels (2+3, 4, 5)
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Mode-2: All five levels
Table 514 presents the estimation results for Model-2, where hourly volume is not a

significant variable. For these results, “Intersection” and “driver_other” have significant

positive coefficients, while “weather_snow” hasasignificant negative coefficient.

Table5-14 Ordered Probit Model -2 for arterial accidents

G | Level-1, Level-2, Level-3, Level-4, Level-5
Data points é?gri T\‘Acgg?nl\zsosss, MD97, MDA410, and USL
Model estimation results
Parameter Estimate t-datistic  Pvalue
c -170268  -4.40369  [.000]
HOURLY VOLUME  -840E-02  -1.00432 [.315]
INTERSECTION 137688  3.82537  [.000]
WEATHER_SNOW -524007  -2.98789  [.003]
WEATHER_FOG 024564 -112186  [.911]
DRIVER_DRINKING 008716 12468  [.212]
*DRIVER_OTHER 323075 294150  [.003]
WORKZONE 015610 141684  [.887]
MEDIAN_DIVIDED 015272 422901  [.672]
Hs 508958  31.6692  [.000]
™ 120611 458941  [.000]
Us 240500 347019  [.000]

*Note: DRIVER_OTHER refers to the involved drivers who are under some abnormal

conditions other than had-been-drinking.
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Model-6: 3levels (1+2, 3+4, 5)
Table 5-15 presents the estimation results of Model-6, where hourly volume becomes
asignificant variable and other relationships remain unchanged. This model specification

is intended to explore the impact of reclassifying severity into three distinct levels on the
estimated relationships.

Table5-15 Ordered Probit Model -6 for arterial accidents

d;g‘]f?é;?’on Level-1+Level-2, Level-3+Level-4, Level-5
Data points é518 accidents
rom MD2, MD355, MD97, MD410, and US1
Model estimation results

Parameter Estimate t-statistic ~ P-value
C -.641253 -13.0495  [.000]
HOURLY_VOLUME -.023771 -1.72515  [.085]
INTERSECTION 167542 4.01417 [.000]
WEATHER_SNOW 417863  -2.01275 [.044]
WEATHER_FOG -034805  -.134809 [.893]
DRIVER_DRINKING .131483 1.44084 [.150Q]
DRIVER_OTHER .399042 325205  [.001]
WORKZONE -.088992 -.669264  [.503]
MEDIAN_DIVIDED -.010797 -256871  [.797]
Hs 1.89868 27.5385 [.000Q]
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Model-8: 4 levels (2, 3, 4, 5)
Table 5-16 presents the estimation results of Model-8.

Table5-16 Ordered Probit Model -8 for arterial accidents

g |Level-2, Level-3, Level4, Level -5
Data points |2:032 (excluding the property-damage-only accidents)
rom MD2, MD355, MD97, MD410, and US1
Model estimation results
Parameter Estimate t-statistic ~ P-value
C .342533 488236  [.000]
HOURLY_VOLUME -.051202 -2.41656  [.016]
INTERSECTION 155234  3.00065 [.003]
WEATHER_SNOW -.174407 -580374 [.562]
WEATHER_FOG -.256906 -815444  [.415]
DRIVER_DRINKING 124494 1.08203 [.279]
DRIVER_OTHER 557906  3.67382  [.000]
WORKZONE -.185056 -1.15257  [.249]
MEDIAN_DIVIDED -.114395 -2.17070  [.030]
Ma 1.04953 324510  [.000]
Us 247255 314301  [.000]

As reported in the exploratory analysis, the relation between the Level-1 severity and
congestion is quite different from other severity levels as most accidents in the level-1
severity involve property-damage-only accidents. Many minor accidents tend to occur
during snow or poor weather conditions. This is proven by the significant parameter for
the variable of “Weather_snow”. Model-2 and Model-6 consistently indicate that
“Intersection” and “ Driver conditions are two significant factors affecting the results
for accident severity. For both models, congestion (volume per lane) does not exhibit a
strong significant impact due most likely to the difference in its relationship to accidents

at the severity level of property damage only and personal injury. Therefore, Model-8
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focuses on estimating the target relationship without the Level-1 severity accident data
After excluding the Level-1 severity data, the variable for snow days becomes
insignificant and hourly volume emerges as one of the more significant factors. This fact

is consistent with the belief that a large volume of Level-1 accidents (i.e. property

damage only accidents) exists.

Model-10: 3levels (2+3, 4, 5)
Table 5-17 presents the estimation results of Model-10.

Table5-17 Ordered Probit Model -10 for arteria accidents

gverlt |Level-2+Level-3, Level-4, Level-5
Data points |2:032 (excluding the property -damage-only accidents)
rom MD2, MD355, MD97, MD410, and US1
Model estimation results
Parameter Estimate  t-statistic ~ P-value
C -589618  -6.29549 [.000]
HOURLY_VOLUME -091365  -2.82283 [.005]
INTERSECTION 135151 2.09398  [.036]
WEATHER_SNOW 652049  -1.25695 [.209]
WEATHER_FOG -.636695 -1.22499  [.221]
DRIVER_DRINKING .066267 464270  [.642]
DRIVER_OTHER .632713 3.71988 [.00Q]
WORKZONE -112528 -551702 [.581]
MEDIAN_DIVIDED - 146471  -2.23421  [.025]
Us 142960 18.7947  [.000]

Table 517 presents the estimation results using the same model specification as
Model-8 but integrating Level -2 (possibly injured) with Level-3 (injured). The estimation
results indicate that the integration of Level-2 and Level-3 accidents does not affect the
relationship between accident severity and the identified significant variables.
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Basead on the estimation results of Tables 5-14 through 5-17, it can be concluded that
the relationship between accident severity and key associated variables are as follows:

Congestion level (volume per lane): Accidents occurring on more congested
arterials are more likely to be less severe. This is proven by the negative and
significant parameters for volume per lane.
Intersection or not: Accidents occurring at intersections are more likely to be
more severe. This may be attributed to the fact that there are more head-on
collisions occurring at intersections than at roadway links. In addition, head-on
collisions usually result in higher personal injury severity than other types of
collisions, such as rear-end collisions.
Driver condition: The estimation results illustrate that if drivers involved in
accidents are affected by abnormal conditions such as using drugs or having
physical defects, the resulting severity islikely to be higher than for drivers under
normal driving conditions.
Divided median type: The existence of median seems to contribute significantly
to the reduction in the resulting accident severity, as evidenced in its significant
and negative coefficient.
Weather conditions: When Level-1 severity of accidents is included in the
sample dataset, the estimation results indicate that the snowing weather condition
is a significant variable. This is proven by a larger number of Level-1 accidents
(i.e., property-damage-only accidents). The estimation results of Models 2 and 6
further suggest that the accidents that occurred in snow conditions tend to be at a

lower severity level.

5.7 Modd Estimation for Freeway Segments

Using the same procedures and estimation algorithms, this section investigates the
relationship between congestion and accident severity levels on freeways. Variablesto be
included in model specifications are listed below:

o x1:Hourly volume per lane

o Xx2:Auxiliary laneratio
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thetotal lengthof auxiliary lanesonalink
thelength of thelink

Auxiliary laneratio =

o x3: Weather_snow
o x4 : Driver conditions

a x5: Inwork-zoneor not

Model estimation results

Table 5-18 illustrates the list of model specifications explored in this section and the
associated datasets used for estimation. Of the 12 experimental specifications listed in
Table5-18, Models 1, 5, and 9 present a consistent relationship between acci dent severity
and key associated variables (see Tables 5-19, 520, and 5-21).

Table5-18 A completelist of estimated severity models for freeways

Severity Levels _
Modeled (Y) Dataset Independent variables

Hourly volume per lane, auxiliary lane
Model-1 | (1,2 3,4, 5 |All availabledata| ratio (X,), weather_snow (X3), driver
condition (X4), work-zone indicator (Xs)

Model-2 | (1,2, 3,4,5) | Weekday data | Hourly volume per lane, X, X3, X4, X5

Model-3 | (1, 2+3+4,5) |All available data| Hourly volume per lane, X, X3, X4, X5

Model-4 | (1, 2+3+4,5) | Weekday data | Hourly volume per lane, X, X3, X4, X5

Model-5 | (1+2, 3+4,5) |All availabledata| Hourly volume per lane, X5, X3, Xa, X5

Model-6 | (1+2, 3+4,5) | Weekday data | Hourly volume per lane, X5, X3, Xa4, X5

Model-7 (2,3,4,5 |All availabledata]| Hourly volume per lane, X2, X3, Xa, X5

Model-8 (2,3, 4,5 Weekday data | Hourly volume per lane, Xz, X3, X4, X5

Model-9 | (2+3,4,5) |All availabledata| Hourly volume per lane, Xz, X3, X4, Xs

Model-10| (2+3,4,5) Weekday data | Hourly volume per lane, X;, X3, X4, X5

Model-11| (2, 3+4,5) |All available data| Hourly volume per lane, Xz, X3, X4, X5
Model-12| (2, 3+4,5) Weekday data | Hourly volume per lane, Xz, X3, X4, X5
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Table5-19 Ordered Probit Model -1 for freeway accidents

oY |Level-1, Level-2, Level-3, Level-4, Level5
Data points g868 accidents
rom [-495, 1-695, 1-95, I-270, and US50
Model estimation results

Parameter Estimate t-statistic ~ P-value
C -.090075 -1.82659  [.068]
AUX_RATIO -.089372 -243609 [.015]
HOURLY_VOLUME  -.017528 -2.58344  [.010]
WEATHER_SNOW -.341361 -2.93543  [.003]
DRIVER_DRINKING  .133097 201522  [.044]
*DRIVER_OTHER 183071 244868 [.014]
WORKZONE 119781 1.15409 [.248]
s 483448 31.2991  [.000]
Ha 1.09561 44.3738  [.000]
Us 2.24982 35.7829  [.000]

*Note: DRIVER_OTHER refers to the involved drives who are in some abnormal conditions

other than had-been-drinking.
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Table5-20 Ordered Probit Model -5 for freeway accidents

qoreY | Level-1+Lev -2, Level-3+Level-4, Level -5
Data points g868 accidents
rom [-495, 1-695, 1-95, I-270, and US50
Model estimation results

Parameter Estimate t-statistic ~ P-value
C -.432557 -7.71280  [.000]
AUX_RATIO -.171304 -3.88531  [.000]
HOURLY_VOLUME -.034780 -4.41406  [.000]
WEATHER_SNOW -.294648 215177  [.031]
DRIVER_DRINKING .091651 120733 [.227]
DRIVER_OTHER .225370 2.67454  [.007]
WORKZONE .081391 .680242  [.496]
Hs 1.77113 28.3265  [.000]
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Table5-21 Ordered Probit Model -9 for freeway accidents

g ;gi;?’on Level-2+Level-3, Level-4, Level-5
Datapoints | o (06 1695, 1-86, 1270, A V0.
Model estimation results
Parameter Estimate t-statistic ~ P-value
C -.371140 -4.21757  [.000]
AUX_RATIO -.239855 343718  [.001]
HOURLY_VOLUME  -.050965 -4.07057  [.000]
WEATHER_SNOW 047629 205046  [.83g]
DRIVER_DRINKING .215036 194036 [.052]
DRIVER_OTHER 316210 257182  [.010]
WORKZONE 138299 798666  [.424]
Hs 1.41237 20.2250  [.000]

It is important to note that when severity level-1 data are excluded from the
estimation the variable of snow condition becomes insignificant similar to the estimation
results for arterials. Thisis proven in the Model-9 results.

-85-



Based on preliminary statistical results, Model-1 was selected for further estimation
and the estimation results are reported in Table 5-22.

Table5-22 Final Ordered Probit Model for freeway accidents

qoelY |Level-1, Level-2, Level-3, Level-4, Level-5
Data points é868 accidents
rom 1-495, 1-695, |-95, I-270, and US50
Model estimation results

Parameter Estimate t-statistic ~ P-value
C -.084126 -1.71567  [.086]
AUX_RATIO -.091038 248349  [.013]
HOURLY_VOLUME -.017851 -2.63363  [.008]
WEATHER_SNOW -.344029 -2.95859  [.003]
DRIVER_DRINKING 133093 2.01529  [.044]
DRIVER_OTHER 182727 244436  [.015]

Stability test results

Number of coefficients: K =6
Number of observations in subset-1: n; = 2383

Number of observations in subset-2: n, = 2485

Residual sum of squares:;

A € =578, & =2533,§ € =2746
Theresulting F statisticsis 1.04 < F 0.95(6, 4856) = 2.10
Therefore, the final Ordered Probit model is stable.

Table 522 presents the estimation results using the same model specification as
Model-1 but only including the significant exploratory variables. To ensure that all

estimated parameter signs are independent to the differences in the sample size, a
standard parameter stability test was also preformed. The test results are illustrated in
Table 522 and clearly indicate that the estimated relationship between accident severity

and key factorsis stable and will not vary with the selected sample size.
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It can be concluded from Tables 519 through 522 that the relationship between
accident severity on freeways and key associated variablesis asfollows:

Congestion level (volume per lane): Accidents that occurred on more congested
freeways are more likely to be less severe. This is proven by the negative and
significant parameters for volume per lane.
The auxiliary lane ratio: Accidents that occurred on roadway links with higher
auxiliary lane ratios are more likely to be less severe. This is proven by the
negative and significant parameters for the auxiliary lane ratio.
Snowing weather conditions: Accidents that occur under snow conditions are
more likely to be less severe. This may be caused by lower speeds and longer
headways maintained by the drivers. The effect of rainy weather conditionsis not
statistically significant.
Driver conditions: The estimation results indicate that if drivers involved in
accidents are under the influence of acohol or subject to other abnormal
conditions, the resulting severity will be higher than for drivers under normal
driving conditions. This may be attributed to a decrease in human response and/or
less attention to the presence of other vehicles or obstacles.

5.8 Summary and Conclusions

This chapter has investigated the relationship between accident severity and
congestion levels on both sample freeways and arterials. It includes an exploratory

analyses and multivariate statistical estimation using Ordered Probit regression.

The research results, consistent with general beliefs, are summarized below:
Accidents occurring on more congested freeways and arterials are more likely
to happen at alower severity levels.

Accidents occurring at intersections are more likely to happen at higher
severity levels.
Accidents on both freeways and arterials are more likely to occur at lower

severity levels during snow conditions.
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If driversinvolved in accidents are under the influence of acohol or subject to
other abnormal conditions, the resulting severity will be higher than those
under normal driving conditions.

Accidents occurring on a freeway link with higher auxiliary lane ratio are
more likely to be at alower severity level.

The presence of medians tends to contribute signifi cantly to the reduction in

the level of accident severity on arterials.
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CHAPTERG6
CLOSING AND FUTURE RESEARCH

6.1 Closing

This research investigated the relationship between congestion and accidents with a
specific emphasis on the impact various volume levels have on the resulting accident
frequency, rate, and severity. The work presented here consists of two primary phases;
Phase-1 explored the discrepancies of accident characteristics under various conditions
(e.g. peak and off-peak periods, work-zones and normal highway segments, weather
conditions, and presence of medians); and based on the preliminary results from Phase-1,
Phase-2 focused on estimating the impacts of congestion and other primary factors on the
distribution of traffic accidents on both freeways and arterials.

As aresult of the stochastic nature of the accidents, this study used Poisson and
Negative Binomial regressions to estimate various continuous multivariate models to
determine the relationship between congestion and accident frequency, and congestion
and accident rate. In view of theinherently discrete and ordered relations among different
severity levels, this study also explored the use of an Ordered Probit model to determine
the compound impacts of traffic volume and associated factors on accident severity. To
ensure the statistical stability of the estimated relationships, a rigorous stability test for
the parameters of all significant variables was performed before conclusions were
formulated.

Based on the avail able sample freeway and arterial accident datafrom Y ear 2000, this
study has yielded the following research findings:

Accident frequency vs. congestion and other associated key factors
Both the exploratory analyses and NB2 models established for arterials and freeways
confirmed the following relationships:
Accident frequency on both freeways and arterials tends to increase with the

congestion levels.
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Divided arterial links exhibit higher accident frequencies than undivided
arteria links with the same volume levels.

Accident frequency on arterials generally increases with intersection density.
Wider medians can significantly redu ce accident frequency on freeways.
Accident frequency on both freeways and arterial links reveals an increasing

trend with the total number of through lanes.

Accident rate vs. congestion and other associated key factors
With the Poisson accident rate model estimated for arterials and the NB1 peak-hour
accident rate model for freeways, the following conclusions on the relationship between
congestion and accident rate were identified.
The accident rate for arterials tends to decrease as volume increases.
The accident rate on freeways during off-peak hours appears to be random,
exhibiting no systematic relationship with traffic volume.
During peak-congestion periods, accident rates tend to increase significantly
with the volumes per lane.
Divided arterial links tend to exhibit higher accident rates than undivided
arterial links with the same volume levels.
Wider medians can significantly reduce accident rates on freeway links.
Accident rate on arterials generally increases with intersection density.
An increase in the total number of through lanes may contribute to a higher

level of accident rate on arterials but not on freeways.

Accident severity vs. congestion and other associated key factors
The Ordered Probit accident severity models were successfully established for the
relationship between accident severity and congestion on both arterials and freeways.
These research findings are summarized bel ow.
Accidents occurring on more congested freeways and arterials are more likely
to be at lower severity levels.
Accidents occurring at intersections are more likely to happen at higher

severity levels than those occurring at roadway segments.
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Accidents occurring during snow conditions on freeways and arterials are

more likely to be at lower severity levels than those occurring during normal
conditions.

If driversinvolved in accidents are under the influence of acohol or subjected
to any abnormal conditions, the severity of accidents is likely to be higher
than those occurring under normal driving conditions.

Accidents occurring on freeway links with higher auxiliary lane ratios are
more likely to be at lower severity levels.

The presence of medians tends to contribute significantly to the reduction in

the resulting accident severity on arterials.

6.2 Future Research Needs

Although this study provide an in-depth analysis of the relationship between
congestion and accidents, further investigation on the impacts of congestion on traffic
safety is necessary. Recommendations for future research areas include:

The relationship between accident rate and intensity of lane-changing movements
that is likely to be correlated to congestion levels.

The relationship between accidents and other indicators of the congestion level

such asv/cratio and speed reduction.

The impacts of highway geometric features (e.g. horizontal curvatures, and

vertical gradients) on accident severity at various congestion levels.

The effects of congestion on behavior of accidentprone drivers (e.g. changing
lanes when there is no sufficient length of gaps, failure to maintain a safety
distance to theleading vehicle).

The impact of congestion on the secondary incident rate during the response and

management of primary accidents.
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Appendix-1: The Poisson and negative binomial regresson models

Asprovenintheliterature review, accident occurrence is a Poisson Processin nature;

therefore, it is appropriate to use the Poisson regression model to explore the relationship
between accident frequency and identified exploratory variables.

Poisson Distribution

e'lk

p(Y =y) = B

?isthe mean of y. The most common formulation for ? is the log-linear model
logl =b'X
Thelog-likelihood function is:
InL=A[-1,+yb'X - Iny!]
i=1

Use Maximum Likelihood Method to estimate the coefficient

The assumption of the Poisson regression model is that the mean of the dependent
variable is approximately equal to the variance of the dependent variable. Therefore,
when this assumption is violated, the Poisson regression model will not provide a valid
estimation of the relationship between accident frequency and congestion levels. The

Lagrange Multiplier Test for overdispersion is performed on every Poisson model.
Under the hypothesis of the Poisson model, the limiting distribution of LM statistics is

chi-squared with one degree of freedom. If the over-dispersionissignificant in the model,
Type | Negative Binomial and Type Il Negative Binomial models are used.

Type | Negative Binomia model assumes the following relationship between
mean and variance:  E[y] =exp (X* b) =

Variance[y] =p* (1 +a)
Type Il Negative Binomia model assumes the following relationship between
mean and variance. E[y]l=exp(X* b) =

Variance[y] = p+ a*p?
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Although a stronger assumption on the equality of the mean and variance of the
dependent variable is needed for the Poisson model, it is shown to be more robust in
terms of the model specification. Therefore, this study always starts with the Poisson
model and whenever the over-dispersion presents negative binomial models will be
employed. Furthermore, if the over-dispersion is not significant, the NB models will be

estimated when the mean-variance ratio of the dependent variable is significantly
different than 1.
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Appendix-2: The Parameter Stability Test

The parameter stability test is carried out by the Chow test. First it estimates the
regression model with the complete dataset and calculates the residual sum of sguares
(é_ eﬁ ). Next, the sample dataset is randomly partitioned into two comparable sub-
datasets. Third, the regression models are estimated with the resulting two sub-datasets

respectively and the residual sum of squares (Q € , 8 € ) is caculated. Finaly,
calculate the F-statistic:

_laeg-@g+a e«
(@a€+ae)n+n,- 2K)

Where, K isthe number of coefficientsin the regression model, n1 and n2 are the number

of observationsin two sub -datasets.

Stability test results of the accident frequency model for arterials:
Partition the sample dataset and test the Poisson model stability.

&-@g+aa)k

& +a €)/(n +n,- 2K)

B
(a

Where: K =4, n1 =670, n2 =696
Residual sum of squares (scaled by 10%):
Q € =184695539 ; q &7 = 64050659 ; e =119047128
Theresulting F statisticsis 2.96< F 0.99(4, 1358) =3.34
Conclusion: the estimated Poisson model is stable.

Stability test results of the accident frequency model for freeways:

Partition the sampl e dataset and test the final model stability.

- deg-@eg+aglx
(@a€+ae)/n+n,- 2K)
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Where: K =5,n1 =181, n2=177
Residual sum of squares (scaled by 1¢F):
4 € =98110;§ & =43981; § & =52745
Theresulting F statistics is 1.25 < F 0.95(5, 348) = 2.21
Conclusion: the NB2 model is stable.

Stability test results of the accident rate model for arterials:
Partition the sample dataset and test the Poisson model stability.

F =

A e-@e+a ek
a

(A &€+ae)/(n+n,- 2K)

Where: K =4, n1 =670, n2 =696
Residual sum of squares (scaled by 10°):
A €& =821812059 €& =382298453 & = 43787362

Theresulting F statisticsis 0.68< F 0.95(4,1358) = 2.37

Conclusion: the Poisson mode is stable.

Stability test results of the accident rate model for freeways:

Partition the sample dataset and test the model stability.

- [ag-@eralk
(@ €+a &)/ +n,- 2K)

Where: K=3,n1=89,n2=90
Residual sum of squares:
A € =73208;4 & =43983; § € =28143

Theresulting F statistics is 0.64 < F 0.95(3, 173) = 2.60
Conclusion: the final model is stable.
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Stability test results of the accident severity model for freeways:
Partition the sample dataset and test the model stability.

_lag- &g+ alx
(@ae+ae)/m+n,- 2K)

Where: K=6, n1=2383, n2=2485
Residual sum of squares:
A € =528 & =2533; § € = 2746
Theresulting F statisticsis 1.04 < F 0.95(6, 4856) = 2.10
Conclusion: thefinal model is stable.
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