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This study developed a mesoscopic model for the before and after study of MD 200, the Inter-

County Connector (ICC). It is in line with recent efforts by the Maryland State Highway 

Administration (SHA) in developing effective modeling tools for traffic analysis and travel 

forecasting. Examples include the I-270 microscopic traffic simulation model and the Maryland 

Statewide Transportation Model (MSTM). A comprehensive analysis of many emerging issues 

in transportation operations and planning at the corridor, multi-corridor, and even statewide 

levels requires the integration of both microscopic simulation model and macroscopic travel 

demand models. This study bridges such a gap by developing a mesoscopic model that draws 

strengths from both types of models. 

 

The integrated models are capable of capturing detailed traffic dynamics and the impacts of 

traffic operation improvements. At the same time, the scale of the integrated model is large 

enough to capture any regional impacts. A route diversion model and an agent-based departure 

time choice model were developed and integrated to predict individual behavioral reactions to 

network changes, thus allowing the integrated model to reflect both spatial and temporal traffic 

demand adjustment and regional traffic dynamics. 

 

This study benefited from previous data collection efforts by both SHA and the research team. 

Both individual travel behavior models and dynamic network supply models were calibrated 

against local data collected from the Washington, D.C., metropolitan area. The calibrated model 

was then applied to evaluate the network performance before and after the Inter-County 

Connector was opened as a tolling facility. The results indicated that after its opening, the new 

ICC would initially attract around 9,000 users during the morning peak period and would help 

reduce both delay and stopping time in the study area. 

 

Applications of the integrated mesoscopic model go well beyond the before-and-after study of 

new network infrastructure. Given its sensitivity to changes in both network conditions and 

travel demand shifts, it can be applied to study a wide spectrum of transportation-related 

EXECUTIVE SUMMARY 
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problems, including traffic operation improvement, dynamic pricing strategies, new travel 

demand management policies, and incident management policies. 
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The Maryland State Highway Administration (SHA) has successfully developed several effective 

modeling tools for traffic analysis and travel forecasting in recent years. Examples include the I-

270 corridor meso/microscopic traffic simulation models and the Maryland Statewide 

Transportation Model (MSTM). The I-270 corridor traffic simulation model contains 399 sub-

zones based on the Metropolitan Washington Council of Governments (MWCOG) and Prince 

George County traffic analysis zone systems, and it simulates traffic movements at 15-minute 

origin-destination (OD) demand intervals along the I-270/MD 355 corridor as well as on major 

roadways in the vicinity of the corridor. A working version of the MSTM was recently delivered 

to SHA by the model developers, and the statewide travel demand model is currently being 

calibrated and validated. The MSTM will soon be applied to analyze various transportation 

planning and policy scenarios relevant to land use and transportation decision-making in 

Maryland. These models provide necessary information needed for transportation operations and 

planning decision-making at the corridor, sub-area, and state levels. There are also other 

existing/upcoming traffic simulation models for various highway corridors (e.g. Synchro models 

for intersection analysis, a VISSIM model for MD 200, the Inter-County Connector (ICC) 

freeway, and travel demand models for metropolitan transportation planning in Maryland e.g. 

MWCOG and BMC models). 

 

A recent synthesis of transportation operations and planning analysis needs in Maryland has 

identified a number of important transportation-related issues that require modeling analysis. 

Some of these issues include performance monitoring, congestion management, traffic 

operations, multimodal corridor improvements, freight transportation, land use and economic 

development. The comprehensive analysis of many of these issues requires the integration of 

microscopic traffic simulation models and travel demand models at the corridor, multi-corridor, 

and even statewide levels. For instance, the detailed impact of various traffic management 

strategies on corridor-level congestion is typically best modeled with a microscopic traffic 

simulator (e.g. CORSIM, TRANSMODELER, VISSIM, AIMSUN, or non-commercial traffic 

simulators). At the same time, these traffic management strategies can produce various demand 

responses such as peak spreading, modal shifts, and traffic diversions at the corridor and regional 

INTRODUCTION 
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levels, which are best analyzed with travel demand models. In order to comprehensively analyze 

the traffic and demand impact of various operations and planning strategies, mesoscopic models 

are used. These models bridge the gap between microscopic traffic simulation and macroscopic 

travel demand models from both the methodological and application points of view. Moreover, 

the practical needs at SHA of analyzing highway and multimodal corridor projects with 

significant regional impact (ICC, I-270, I-495, etc.) also highlight the value and necessity of 

mesoscopic models. A good example is the before-and-after study of the Inter-County Connector 

project. 

 

MD 200, the Inter-County Connector (ICC) may be the most significant and high-profile 

highway project in Maryland since the completion of the existing Interstate freeway system 

several decades ago. The ICC links existing and proposed development areas between the I-

270/I-370 and I-95/US-1 corridors within central and eastern Montgomery County and 

northwestern Prince George's County. Existing project plans and design promise a state-of-the-

art, multi-modal east-west highway that limits access and accommodates the movements of 

passengers and goods. The expected benefits of the ICC include: (1) Increased community 

mobility and safety; (2) More efficient and reliable movement of goods and people to and from 

economic centers in Maryland; (3) Cost-effective transportation infrastructure to serve existing 

and future development patterns that reflect local land use planning objectives; and (4) 

Restoration of natural, human and cultural environments in the project area. In order to 

comprehensively evaluate these potential benefits and to better understand the impact of the ICC 

on arterial roads and nearby freeways in the region such as I-95, I-270 and I-495, a mesoscopic 

model is needed. By doing so, both the changes in the local traffic pattern and the 

aforementioned behavioral reactions can be analyzed. 

 

To bridge the gap between the needs in the field and the capacity of current modeling tools, this 

research developed a mesoscopic-modeling framework that integrates agent-based travel 

behavior models with large-scale microscopic traffic simulation models. Both the simulation 

model and behavioral models were calibrated using field data collected at the I-270/I-495/I-95 

corridor in the North Washington, D.C., metropolitan area. The calibrated model was then 

applied to evaluate the base-year (2010) existing transportation network in the ICC corridor and 
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the after-ICC scenario. The latter includes both the existing network and the new ICC freeway 

and ramp facilities. The final modeling product is capable of analyzing traffic operations, route 

diversion, peak spreading, and other major demand shifts under a variety of traffic operations 

and planning scenarios in the study area. 

 

The next chapter will present the overall modeling framework, followed by a detailed description 

of each component in this integrated model. The data used in this study will be described and the 

calibration/validation process will be presented. Also, several potential applications of the 

integrated model proposed in this study will be discussed. This report will be concluded by a 

discussion of future research work. 
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1.1 INTRODUCTION 

Microscopic traffic simulation models exhibit strong advantages. They are known for capturing 

detailed traffic dynamics and have been proven in practice as a valuable tool for evaluating 

corridor capacity expansion and traffic operation improvements. Their applications have recently 

been extended to address a broader range of transportation-related issues, including congestion 

management, multimodal corridor improvements, evacuation planning, land use and economic 

development. However, a comprehensive analysis of many of these issues requires models that 

can analyze various demand responses to various traffic management strategies. Included are 

peak spreading, modal shifts, and traffic diversions at the corridor and regional levels, all of 

which are conventionally taken as given in micro-simulation models. Another challenge of 

applying micro-simulation models to a large network is the difficulty of obtaining reliable travel 

demand data, usually as time-dependent origin-destination matrices.  

Although planning models are traditionally used to address these demand-side problems, they are 

criticized for two reasons: (1) assigning traffic flow over capacity; and (2) inability to capture 

operational improvements, such as better signal timing. As planning models move from the 

aggregate four-step models into more realistic individual-based models, more details on travel 

experience (e.g. time-dependent travel time) are required to make these models operational in 

practice. Surveys based on hypothetical scenarios, which are relied on heavily during the model 

development and calibration process, can only support analysis for a limited number of OD pairs 

due to budget and manpower constraints. However, these inputs can be easily extracted from 

microscopic traffic simulation models. Therefore, it becomes attractive to develop integrated 

models to benefit from the strengths of both sides. 

Figure 1 summarizes the general structure of the proposed mesoscopic modeling framework and 

how it connects with various ongoing data-collection/consolidation/modeling/application efforts 

at SHA. Various Agent-Based Modeling System (ABMS) modules, which capture the behavioral 

reactions and the resulting travel demand changes, form the modeling engine and play a central 

role in the comprehensive framework. The data hub synthesizes information from existing data 

CHAPTER 1: MODELING FRAMEWORK 
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sources, enhances them through data filtering and integration, and then informs the modeling 

engine. Existing models, such as the conventional four-step regional planning model, can also 

inform the modeling engine.  If data is insufficient, conventional models can replace a subset of 

the multi-dimensional ABMS. The ABMS modeling engine has to interface with supply-side 

models (most of which are developed with various commercial software packages) to provide a 

full picture of the transportation system dynamics. To facilitate communications with 

practitioners, policy makers, and the public, a visualization module is needed to present system 

performance and its dynamics. Outputs from such a system will support various applications in 

both traffic operations and transportation planning. They will be discussed in detail in the 

following sections to demonstrate the potential of the system to benefit current practice. 

 

Figure 1. Overall Structure of Integrated Mesoscopic Models 
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1.2 MESOSCOPIC MODELING FRAMEWORK 

 
The framework of the integrated model is presented in Figure 2. A microscopic traffic simulator 

was built with TransModeler, one of the major commercial software packages for micro-

simulation. Models were constructed to build the origin-destination (OD) matrices for the 

simulator based on demand data from the regional planning model. The dynamic OD matrices 

and parameters for the micro-simulation model were then calibrated using field traffic counts. An 

agent-based departure time choice model was developed separately and then integrated to 

capture the behavioral reactions to network changes. The integrated model operated iteratively 

until no traveler was willing or able to adjust travel decisions and a stable network condition was 

reached. Details for each component of the model will be discussed in the following chapters. 
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Figure 2. Overall Framework of the Integrated Model 
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2.1 INTRODUCTION 

 

Many microscopic traffic simulators (e.g. CORSIM, see Prevedouros and Wang, 1999; 

TRANSMODELER, see Wojtowicz et al., 2011; VISSIM, see Gomes et al., 2004, AIMSUN, 

see Barceló and Casas, 2005; or non-commercial traffic simulators, see Chen et al., 2002) have 

been used in previous studies. These models differ in the underlining car-following models and 

the implementation of different traveler/driver modules. No consensus is reached on the 

superiority of any simulator in literature. TransModeler was selected in this study because it has 

a well-developed interface with Geographic Information System (GIS), which is necessary when 

working with multiple data sources. 

 

A simulation model that includes all freeways, major arterials, most minor arterials, and some 

local streets along the I-270/I-495/I-95 corridor in the North Washington, D.C., metropolitan 

area was developed. It covers central and eastern Montgomery County and the northwestern 

Prince George's County of the State of Maryland, where several new developments, such as the 

Great Seneca Science Corridor (GSSC) in West Gaithersburg and military bases in Fort Meade, 

have been proposed. A new freeway currently under construction, MD 200, the Inter-County 

Connector (ICC), also traverses this area. The simulated network (see Figure 3), which includes 

7121 links and 3521 nodes, was developed on top of satellite images provided by Google Earth 

and conforms to the true geometry with high accuracy. 

 

CHAPTER 2: TRAFFIC SIMULATION MODEL 
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Figure 3. Simulated Network (in red) in the Study Area 

 

2.2 OVERVIEW OF MODEL CALIBRATION 

It has always been a great challenge to calibrate large-scale micro-simulation models. The 

reasons are three-fold: 1) it is extremely hard to obtain the dynamic origin-destination (OD) 

tables on large network; 2) complete information of traffic control strategies (such as signal 

timing plans) are usually not available; 3) the number of parameters is so large that it is hard to 

identify which one (or ones) should be adjusted to match the field counts.  

 

Many previous research efforts have dedicated themselves to solving the first problem. Here, 

researchers sought to solve time-dependent OD tables based on two major information sources: 

static OD tables from regional planning models and traffic counts from field observation. For 

example, Van Zuylen and Willumsen (1980) estimated static OD trip table by using the entropy 

model. Fisk (1988) extended the entropy model under UE assumption, while Liu and Fricker 

(1996) investigated the same problem under SUE assumption. More recent examples include 

Cascetta et al. (1993), Ashok and Ben-Akiva (1993), Tavana and Mahmassanni (2001), and Lin 

and Chang (2006). Although there are abundant literatures in this field, many problems have not 
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yet been addressed. Jintanakul et al. (2011) pointed out four common difficulties for existing 

studies: 1) high sensitivity to seed matrix; 2) non-uniqueness in link-path flow pattern; 3) lack of 

monotonicity between traffic counts and OD flows; and 4) lack of ground truth OD matrices for 

model validation. Given these difficulties, this study did not seek a comprehensive solution with 

high accuracy to the dynamic OD estimation problem. Instead, a systematic approach based on 

Gradient Projection (GP) algorithm was proposed to derive the seed matrix for the study area and 

an algorithm extended from a previous study by Nielson (1997) was used to obtain the dynamic 

OD matrices. Instead of focusing on a single mode as seen in previous studies, this research 

focuses on multi-modal traffic (Single Occupancy Vehicle, High Occupancy Vehicles, and 

Trucks). This difference is crucial because a HOV facility (I-270 HOV lane) exists in the study 

area. 

 

Surprisingly, the second problem related to traffic control information was not widely discussed 

in previous studies on large-scale traffic simulation. Ideally, the signal-timing plan used in the 

field should also be used in simulation. However, complete information is usually not available 

for a large network such as the one in this study. Due to the complex geometric design of various 

intersections in the field, it is almost infeasible to apply the state-of-the-art optimization 

algorithms in literature, most of which require detailed inputs about demand patterns and turning 

movement designs. In this study, the field signal-timing plan was applied wherever it was 

available. There are 466 signalized intersections in total, 80 of which used the true signal plan. 

For the rest, a stylized ring-and-barrier plan with a cycle length of 150 seconds typically seen in 

field plans was applied.  The length of green phases was assigned proportionately to the turning 

demand. Future research will explore more effective approaches to implement optimized signal 

plans on large network. 

 

The third difficulty, the large number of parameters controlling both driving and traveling 

behavior, has been extensively studied in previous research by focusing on the development of 

microscopic traffic simulation models. This study adopted a hierarchical calibration strategy to 

avoid confounding facts at different levels. Parameters for driving behavior include free flow 

speeds, car-following models, distribution of critical gaps, and parameters that control lane-

changing behavior (critical distance to start strategic lane changing and critical headway for gap 
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acceptance model). The latter is critical for the traffic flow pattern at weaving segments. There 

are a total of six freeway bifurcations in our study areas, which occur where I-270 and I-95 

interchange with I-495 Capital Beltway. Unfortunately, no fixed loop detector systems are 

available in the region and no speed contour is available. Instead, the major calibration objective 

was to replicate both the flow rate at these bottlenecks and the corridor travel time. After 

calibration, the largest hourly flow rate difference between the observation and model prediction 

was around 7% at the I-95/I-495 bifurcation area, while the numbers were smaller at other 

locations. These parameters for driving behavior were fixed once we moved from corridor to 

network level calibration, where the major concern was the network OD tables. 

 

2.3 MULTI-MODAL STATIC OD ESTIMATION 

Due to their dynamic nature, microscopic traffic simulation models require a set of time-

dependent, multi-class OD tables as inputs. As discussed in the introductory sub-section, 

dynamic OD estimation challenges researchers and practitioners because it is infeasible to trace 

all vehicles between each OD pairs under current technology and with time and monetary 

constraints. Therefore, the research team had to rely on indirect measurements such as link flows 

to estimate dynamic OD demand - an under-determined problem because the number of OD 

pairs is usually much higher than that of link flow observations. To address this problem, some 

domain information about regional traffic demand patterns had to be explored. In this study, the 

best available source of regional travel demand information can be found in the MWCOG 

planning model, which has been constantly maintained and periodically recalibrated against field 

observations over the years. 

 

Given the regional planning model, a sub-area analysis must be conducted to extract the demand 

pattern for the sub-network. This was achieved by capturing all the trips that would travel 

through one of the links in our study area. Conventional link-based assignment algorithms are 

insufficient for completing this sub-area analysis because they do not trace all the paths between 

each OD pair and it is impossible to tell which part of the OD demand travelled on the sub-

network. Therefore, a path-based traffic assignment process must be introduced. Moreover, this 

model must be able to handle multiple traffic classes since the stratification of demand by user 
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classes is common in regional planning models and is crucial in dealing with facilities such as 

HOV/HOT lanes. 

 

Although the theoretical development of path-based traffic assignment algorithms has a long 

history, it is not considered as a viable option for early traffic assignment studies on large 

networks because of intensive memory requirement. Due to recent advancements in algorithms 

and computational capability, path-based traffic assignment algorithms have attracted increased 

interest from researchers. Two algorithms have proven to be promising for applications on large-

network: the disaggregate simplicial decomposition (DSD) algorithm and the gradient projection 

(GP) algorithm. This study adopted the GP algorithm because of its efficiency due to the 

exploration of the second derivative of Hessian Matrix and its simplicity in implementation 

compared to the DSD algorithm. The rest of this subsection describes the GP algorithm and its 

implementation in this study. 

 

A typical traffic assignment problem can be formulated as a mathematical programming problem: 

 ܼ݉݅݊ = න ௫ೌ∈ݓ݀(ݓ)ݐ  (1) 

Subject to flow conservation constraints: 

  ݂௦ = ݀௦ ݎ∀ ∈ ܴ, ݏ ∈ ܵ∈ೝೞ  (2) 

 

Where ݔ is the link flow and ݐ(ݓ) is the link travel time. A is the set of all links in the network. ݀௦  represents the OD demand between origin ݎ and destination ܭ .ݏ௦  is the set of all paths 

between OD pair ݎ and ݏ and the sum of path flows ݂௦must equal total OD demand. The path 

flow and link flow patterns are summarized by the incident matrix ߜ௦  where: 

 

௦ߜ  = ቄ1	݂݅	݈݅݊݇ ܽ ݏ݅ ݊ ℎݐܽ ݇ ݃݊݅ݒݎ݁ݏ ݎ ܽ݊݀ 							0ݏ  (3) ݁ݏ݅ݓݎℎ݁ݐ

and 
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ݔ =  ݂௦ߜ௦∈ೝೞ௦∈ௌ∈ோ , ∀ܽ ∈  ܣ

 

(4) 

and all path flows should be non-negative: 

 ݂௦ ≥ 0, ∀݇ ∈ ,௦ܭ ݎ ∈ ܴ, ݏ ∈ ܵ 

 
(5) 

The GP algorithm was first introduced by Bertsekas (1976) for general nonlinear multi-

commodity problems and later applied to traffic assignment problems by Jayakrishnan et al. 

(1994). Chen et al (2002) provides a detailed analysis of its computational characteristics. The 

algorithm searches the optimal along the direction of negative gradient. The step size is decided 

by the second derivative Hessian and a projection to the non-negative domain is made whenever 

the search obtains an infeasible solution. To improve the efficiency and simplify the projection 

operation, the problem is reformulated by partitioning the path set ܭ௦ into the shortest path 

݂തೝೞ௦ and the non-shortest path ݂ೝೞ௦ . The flow conservation constraint (2) can now be expressed as 

 

 ݂തೝೞ௦ = ݀௦ −  ݂௦∈ೝೞ,ஷതೝೞ , ݎ∀ ∈ ܴ, ݏ ∈ ܵ (6) 

This implies that the flow assigned on the current shortest path should be the difference between 

the OD demand and the total flow that has been assigned on other non-shortest paths. A new 

formulation can be obtained by embedding (6) into (1). This new formulation drops the linear 

constraint (2) and becomes a convex problem with only non-negativity constraints, which greatly 

simplified the projection operation. 

 

The algorithm is operated in the following steps: 

Step 0: Search the shortest path for each OD pair (ݎ,  and do an all-or-nothing assignment to (ݏ

get the initial flow pattern. 

 

Step 1: Derive the link flow ݔ(0)  based on current path flow pattern and calculate the 

corresponding link travel time ݐ(0). 
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Step 2: Conduct a new shortest path search based on current link travel time to get the shortest 

time path ത݇௦. If this path does not exist in the previous path set ܭ௦ for OD pair (ݎ,  then add ,(ݏ

it in the set. The path set is now divided into two sets: the shortest path and all the non-shortest 

paths. 

 

Step 3: Calculate the new path flow for all the non-shortest paths by using formula (7) and 

project it to the non-negative domain (i.e. set it to 0 when the link flow becomes negative). 

 

 ݂௦(݊ + 1) = ቈ ݂௦(݊) − (݊)௦ݏ(݊)ܽ (݃௦(݊) − ݃തೝೞ()௦ )ା , ∀݇ ∈ ,௦ܭ ݇≠ ത݇௦, ݎ ∈ ܴ, ݏ ∈ ܵ 

(7) 

Where n is the iteration number, ܽ(݊) is the step size and ݏ௦(݊) is the diagonal element of the 

second derivative Hessian. ݃௦(݊)  and ݃തೝೞ()௦  are the path travel time along path ݇  and the 

shortest path ത݇௦. This formulation implies that the path flow should be adjusted according to the 

travel time difference between current path travel time and the travel time on the shortest path. 

Less flow should be assigned to paths with longer travel time. However, the step size should also 

be adjusted according to the second derivative Hessian Matrix. For a full discussion of its 

mathematical property, please refer to Chen et al. (2002). 

 

Step 4: Calculate the flow on the current shortest path by comparing the OD demand and total 

demand on all non-shortest paths. 

 

 ݂തೝೞ()௦ (݊ + 1) = ݀௦ −  ݂௦(݊ + 1)∈ೝೞ,ஷതೝೞ() , ݎ∀ ∈ ܴ, ݏ ∈ ܵ 
(8) 

 

 

Step 5: Derive the updated link flow ݔ(݊ + 1) based on current path flow pattern ݂௦(݊ + 1) 
and calculate the corresponding link travel time ݐ(݊ + 1). Reevaluate path travel time and 

compare the current total travel time and the minimal travel time under the assumption that the 

shortest path is exclusively used. Decide if a convergence has been reached. If not, go to Step 2 

to start a new iteration. 
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In this study, the conical volume delay function used by the MWCOG model was adopted to 

derive link travel time. All links were divided into 7 area types according to the built 

environment (e.g. downtown, suburban, rural, etc.) and 7 functional classes (centroid connector, 

freeways, major arterials, minor arterials, collectors, expressways and ramps). In total, 49 

categories were defined and each category was assigned a unique set of parameters (e.g. free 

flow speed, capacity per lane, conical function parameters, etc.). For detailed definitions of each 

category, please refer to the MWCOG model user guide. 

 

Three types of user classes were considered in this study: SOV, HOV, and truck. The iterative 

process described in this sub-section was operated iteratively among three user classes, each of 

which had a different OD demand table. Also, link properties had to be adjusted with a sub-loop 

for each user class (e.g. SOV cannot use HOV lanes). Figure 4 illustrates this iterative process. 

  

 
Figure 4. Path-based Multi-class Assignment 
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2.4 CALIBRATION OF DYNAMIC OD 

Given the static OD matrices from previous steps, this sub-section seeks to match the spatial and 

temporal traffic pattern with field observations by adjusting the time-dependent OD tables. 

Twenty minutes will be used as the standard time interval for each OD matrix, which is 

consistent with the behavioral models to be integrated in the next section. A demand profile 

based on aggregated travel demand during each 20 minute time period was developed. It was 

then applied to divide the initial 3-hour static demand into a series of OD matrices, each of which 

represent OD demand by vehicle class for the corresponding time period. These matrices would 

serve as seed matrices for further adjustment. 

 

The dynamic OD estimation algorithm is a variation of the Multiple Path Matrix Estimation 

Method (MPME) proposed by Nielsen (1997), which is designed for static OD estimation. The 

proposed algorithm first evaluates the OD demand adjustment factor α୧୨,୰,୲ associated with each 

path r between an OD pair ݅, ݆ and for a given time slot t by the following: 

 

,,௧ߙ  = ,,,௧ߞ ,௧ା௧ೕ,ೝ,ೌ,݂,௧ା௧ೕ,ೝ,ೌ,∈ௌ(,,௧)ܨ ,,,௧∈ௌ(,,௧)ߞ
 (9) 

 

Where, 

 ݆݅ is the OD pair from origin ݅ to destination ݆; 
ݎ  ∈ ܴ(݆݅, ,݆݅)ܵ ;where R(ij,t) is the set of all used paths of OD pair ij, at time t , (ݐ ,ݎ  ;,௧ is the actual link flow on link a at time interval tܨ ;is the link set of path r at time t (ݐ

݂,௧ is the observed link flow on link a at time interval t; Δݐ,,,௧  is the travel time from origin ݅ to link a starting at time t;  

 

,,,௧ߞ  = ൜1,when a ∈ ܵ(݆݅, ,ݎ ,0(ݐ otherwise  (10) 



 MD-13-SP109B4P Project Final Report           UMD Transportation Systems Research Lab                  22 
 

With all factors	ߙ,,௧, the OD demand between each ݅ to ݆ was updated during iteration ݊ based 

on demand of the previous iteration as follows: 

 

 
݀ =   ,,௧݀ିଵ∈ோ(,௧)௧ߙ  

 
(11) 

The algorithm seeks to match the observed link flow by adjusting the OD demand, which uses 

this specific link along its path. If more than one observation is available, an average is taken. 

The algorithm then updates the OD demands by considering impacts of all paths. It differs from 

its static counterpart by considering the time required to reach the specific link along the path 

and mapping its impact to the OD demand with the corresponding departure time. Because the 

OD demand tables were discretized into slices of 20 minutes in this study, only the departure 

time slot of the majority of trips was considered. Starting from the seed matrices, the traffic 

pattern was first simulated with the model built in TransModeler and then the complete trip table 

for all paths was obtained. The time-dependent OD matrices were then updated by applying (9) 

and (10) for all OD pairs and for all time slots. 

 

Field traffic counts provided by SHA were applied to calibrate the model. Freeway traffic counts 

can be accessed through the online interactive Annual Average Daily Traffic (AADT) Locator, 

while arterial traffic counts were collected in previous turning movement studies. In total, counts 

from 50 stations located on both freeways (15 stations) and arterial roads (35 stations) were used 

(see Figure 5 for their locations). Consistent with previous studies, Root Mean Square Error 

(RMSE) was used as the convergence measure. It is defined as below: 

 

ܧܵܯܴ  = ඨ∑ ( ݂, − ሚ݂,)ଶ, ݂ܰ̅
 

(12) 

where ݂, is the actual traffic flow count at station j, from time interval i. ሚ݂, is the simulated 

traffic flow count and ݂ ̅is the average actual traffic flow count over time and locations. 
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After 10 iterations, the overall RMSE measure fell to 12.5%, while the RMSE based on 13 

freeway stations was 8.7%. This calibration result is comparable to many corridor-level 

simulation studies where either turning movement tables were used or OD patterns could be 

easily identified from a limited number of entrances to the network. The problem becomes much 

more difficult when a large-scale network is considered and the only OD information available is 

assumed from the regional planning models. A better match to the field data could be reached by 

continuing this iterative process. However, given the size of the network, that would be very time 

consuming.  

 

 
 

Figure 5. Traffic Count Stations Used in Calibration 
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3.1 INTRODUCTION 

As discussed in the introduction chapter, travelers are adaptive and changes on network traffic 

condition will cause behavioral adjustments, which in turn help to shape future network flow 

patterns. Therefore, travel behavior models must be introduced and integrated with network 

supply models to obtain future demand and flow patterns. There are two major effects due to 

short-term behavioral changes: route diversion and peak spreading.  

 

3.2 ROUTE DIVERSION MODEL 

Travelers change their route to either avoid emerging bottlenecks or to benefit from travel time 

improvement on alternative routes. There have been many previous studies on route choice 

problems. For example, the normative route theory assumes that travelers are rational utility 

maximizers who would choose a route that minimizes travel time or other types of disutility. 

Models that follow this Random Utility Maximization (RUM) approach try to replicate route 

decisions by analyzing what constitute personal utility.   Ben-Akiva et al. (1984) proposed a 

labeling approach to generate a choice set with favorable routes according to different utility 

definitions (e.g. minimum travel distance, travel time, generalized cost, the number of left turns, 

congestion time, or a combination of these functions) and estimate a Nested-logit model. Later 

studies expanded this framework to address the Independence of Irrelevant Alternatives (IIA) 

problem commonly associated with RUM models. For example, Cascetta et al. (2002) proposed 

the C-logit model and Ben-Akiva and Ramming (1998) proposed the Path-Size (PS) Logit model. 

More advanced RUM framework such as Logit Kernel or Mixed Logit Model has also been 

introduced. 

 

Models under RUM framework have been criticized for three major reasons: 1) they predict what 

travelers should do instead of what they actually do; 2) they only predict the equilibrium flow 

pattern while ignoring how people adjust their route choices on a day-to-day basis; and 3) they 

assume everyone has complete knowledge about network conditions while ignoring 

heterogeneity in personal experience and knowledge. To address these problems, models based 

CHAPTER 3: TRAVEL BEHAVIOR MODELS 
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on learning-and-adaptation processes have been introduced. For example, Zhang (2007) 

proposed the Search, Information, Learning, and Knowledge (SILK) model to predict individual 

route choice while considering heterogeneity in personal knowledge and learning processes. This 

rule-based paradigm exhibits certain computational advantage on large networks because it 

generally does not require enumeration of all plausible routes between OD pairs. Moreover, this 

modeling paradigm allows further exploration of the day-to-day evolution of network flow 

patterns, which differs from equilibrium-based RUM framework. 

 

After exploring several models from both alternatives, including the SILK route choice model 

previously developed by the research team, the team decided to adopt the built-in learning-and-

adaptation model in TransModeler. This model assumes that travelers will learn the shortest time 

path with a specific departure time and choose to switch route according to a probability 

associated with personal preferences and extra delay on their current routes. All travelers will 

reevaluate route decisions and improve travel time iteratively. The network flow pattern 

stabilizes as most travelers have exhausted all alternatives and cannot improve route decisions 

any more. As a built-in model in TransModeler, it benefits from the consistent data structure of 

the simulator and exhibits significant advantage in computational efficiency when compared to 

other modeling alternatives.  

 

3.3 DEPARTURE TIME CHOICE MODEL 

3.3.1 Introduction 

As previously discussed, travelers adjust their departure time in reaction to any changes in 

network conditions or management policies. Increasing congestion could force travelers to leave 

home either before or after the peak period, causing peak spreading in aggregate travel demand. 

Policies such as time-varying tolls may also encourage users to travel during shoulder hours of 

the peak periods, leading to a more efficient use of existing infrastructure. Therefore, it is crucial 

to incorporate departure choice models in the integrated model. 
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3.3.2 Existing Models 

There are many departure time choice models in the literature. Similar to the route choice 

problem, departure time choice models can also be divided into two classes: normative and 

positive models. De Jong et al. (2003) provided a comprehensive literature review on RUM 

models. The multinomial logit (MNL) model is often criticized for its inability to account for 

possible correlation between similar alternatives. Small (1982) noted the problem of possibly 

correlated error terms and designed a test to study whether adjacent alternatives are closer 

substitutes (have a higher correlation) than pairs of non-adjacent alternatives. Bhat et al. (2003) 

estimated a MNL model for departure time choice of home-based trips. Socio-demographic and 

employment-related attributes were found to have significant impact on departure time decision. 

They emphasized the importance of differential sensitivities of socio-demographic groups to 

transportation system performance. Saleh and Farrell (2005) estimated a MNL model of 

departure time choice that accounts for variable congestion pricing and trip scheduling 

flexibility. Their result supports the fact that both work and non-work schedule flexibility affects 

departure time choice. Jin (2007) estimated a MNL model of departure time choice for long 

distance travel. The analysis found that trip characteristics along with other attributes, such as 

socioeconomic factors, have a significant impact on departure time choice. The study suggested 

a small-scale stated preference (SP) survey to capture traveler trade-off between the departure 

time and the related constraints, such as peak hour congestion, mode captivity, and work 

schedule. More advanced models under RUM framework include the ordered generalized 

extreme value model (OGEV) by Small (1987), the continuous cross-nested logit model (CCNL) 

by Lemp et al. (2010), and the mixed logit model (ML) by Börjesson (2008), among others. 

 

Compared to the large number of models proposed in literature, their applications in traffic 

simulation on large-scale network are limited. In one example, Ettema et al. (2005) incorporated 

the MNL departure time choice model in the SIAS-PARAMICS micro-simulation study for N57 

in the Netherlands. However, this normative modeling framework encountered similar 

challenges as their counterparts did in route choice problems. In most RUM models, the scope of 

alternatives and their generation mechanism remain unclear. Moreover, most RUM departure 

time models assume complete knowledge and perfect rationality, which may differ from reality. 

Due to its exhaustive nature, RUM models are not computationally efficient under the current 
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integration framework. After exploring a few RUM alternatives, including the Conditional Logit 

Model, Mixed Logit Model and the Latent Class Model, the research team concluded that a 

positive approach based on SILK framework suits this project better. 

 

3.3.3 Overview of Agent-based Departure Time Choice Model (ABDTM) 

The novel positive model employed in this study theorizes departure time choice as a continual 

search process and tracks the departure time changes of each individual user in the transportation 

system. Therefore, it is especially suitable for integration with microscopic traffic simulators, 

simulation-based dynamic traffic assignment models and activity/agent-based travel demand 

models. The theoretical framework is illustrated in Figure 6. 

 

 
Figure 6. Flowchart of the Positive Departure Time Choice Model 
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As depicted in Figure 6, the individual accumulates information from prior travel experiences 

about travel conditions corresponding to different departure times. The individual forms a certain 

degree of spatial knowledge, which produces subjective beliefs. As a result, an individual at any 

given time has an aspiration level for potential gain, which influences travel decisions such as 

when to depart.  

 

If an individual decides not to search, repetitive learned behavior or habitual behavior is 

executed. Otherwise, a search method (or heuristics) is employed to identify alternatives, which 

constitute a mapping from knowledge to decide one feasible alternative departure time. Then, the 

decision step employs decision rules to pick up an alternative option. The decision rules 

constitute a mapping from perceived attributes of alternatives to a choice. Influenced by these 

rules, the individual may prefer the currently used alternative due to habit, or choose a new one, 

moved by the desire of having, for instance, shorter travel time or fewer delays. The outcome of 

the decision step is a provisional trying behavior. The execution of it provides first-hand 

experience of the actual travel attributes in the temporarily chosen alternative at the time of the 

trial.  
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4.1 DATA 

Data used in this study was collected along the Maryland Capital Beltway (I-495) through a 

Revealed Preference/Stated Preference joint survey. The questionnaire was designed as a web-

based survey and the recruitment was conducted by flyer distributions at several exit locations of 

I-495. The sample population consisted of car drivers traveling on I-495 during the following 

weekday extended peak periods: 8:00 a.m. - 11:00 a.m. and 3:30 p.m. -6:00 p.m. on March 21-25 

and May 23-27, 2011. From a sample of 4,000 who received the flyer, a total of 200 responded 

to the questionnaire, resulting in an overall response rate of 5%. Within the 200 that completed 

the questionnaire, 150 submitted the survey, which results in an effective sample size of 150 

observations.  

 

The survey consists of two parts: revealed preference (RP) and stated preference (SP) questions. 

The description for each part of the survey is presented as follows: 

 

4.1. 1 Revealed Preference (RP) Questionnaire 

The RP questionnaire consists of two sections: respondents’ socioeconomics and recent trip 

information. 

 
4.1.1.1 Socioeconomic Information 

The purpose of this section was to investigate socioeconomic data of the potential HOT lane 

users in I-495. The respondent was asked to describe the following socioeconomic information: 

• Gender 

• Age 

• Household income range 

• Education 

• Occupation 

• Number of workers per household 

CHAPTER 4: CALIBRATION AND INTEGRATION OF ABM 



 MD-13-SP109B4P Project Final Report           UMD Transportation Systems Research Lab                  30 
 

• Number of vehicles in the household 

• Most used vehicle type by the respondent 

• Number of years the vehicle owned 

• Workplace zip code 

 

4.1.1.2 Recent Trip Information 

The recent trip information gathered data about the respondent’s most recent trip on I-495. The 

purpose of this section was to use each respondent’s experienced trip condition as the pivot point 

when designing the stated preference (SP) question. This ensured that the stated scenario in the 

SP part was realistic for each respondent. The respondent was asked to describe his/her most 

recent trip information on I-495 in the following categories: 

• Mode choice 

• Number of passengers 

• Trip purpose 

• Departure time (DT) 

• Arrival time (AT) 

• Preferred departure time (PDT) 

• Preferred arrival time (PAT) 

• Total travel time in minutes (TT) 

• Total trip distance in miles (D) 

• Fuel cost (FC) 

• Parking cost ($) 

• Toll cost ($)  

• Entry and exit ramp locations 

• Shortest (TT min) and longest (TT max) travel time experienced on the whole trip in 

minutes 

• Shortest (ST) and longest (LT) travel time experienced on the beltway in minutes 

• Number of departure time alternatives respondents have considered 

• Corresponding departure and arrival time for the alternative departure time  
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• Work starting/ending time, work schedule flexibility (whether they can start working 30 

minutes later) 

 

4.1. 2 Stated Preference (SP) Questionnaire 

The stated preference (SP) portion of the survey aims at investigating traveler departure time 

choice corresponding to time-of-day traffic condition and congestion pricing scheme. It presents 

respondents with 7 scenarios of stated experiment choices on the joint alternatives of departure 

time and lane choice.  

 

The game consists of three alternatives and five variables. Each variable has up to five levels of 

variation per alternative. Three alternatives presented to respondents are: (1) Solo driver on 

normal lane, (2) High Occupancy Toll lane (HOT) and (3) High Occupancy Vehicle lane (HOV). 

The variables included in the departure time choice experiment include: (1) Departure time, (2) 

Travel time range, (3) Arrival time range, (4) Fuel cost and (5) Toll. These variables are 

designed to account for traffic conditions by time-of-day.  They take into account observed 

respondents’ departure time, where the peak period is defined as 8:00 a.m. to 10:00 a.m. and 

3:00 p.m. to 7:00 p.m. (Crunkleton, 2008). The description of the variables used in the game is as 

follows: 

• Departure time: Departure time is pivoted from respondent’s reported departure time in 

the RP.  

• Total travel time range: This variable is designed to account for both time-of-day 

conditions based on the respondent’s reported departure time and travel conditions on toll 

lane. It is aimed to capture travel time uncertainty.  

• Arrival time range: This variable is calculated by corresponding to the departure time and 

travel time range of the scenario provided to the respondent. 

• Fuel cost: The fuel cost is designed to reflect higher expenses in the peak period and on 

the normal lane. The fuel cost is pivoted from the reported fuel cost in the RP part.  

• Toll cost: The toll cost is designed as mileage-based using the Inter-County Connector 

toll rates.  The toll rate for the HOT lane accounts varies if the respondents’ reported 

departure time is in the peak or non-peak period.  
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The survey was designed with orthogonal design approach. Numerical evaluations in a wide 

range of parameter values were undertaken to guarantee sufficient efficiency of the design. The 

pilot study, in combination with expert judgments, was also used to arrive at the final levels of 

attribute in the SP experiment. Figure 7 shows the interface of the departure time choice on the 

website. 

 

Figure 7. Departure Time Questionnaire 

 

4.2 IMPLEMENTATION OF ABDTM 

4.2. 1 Knowledge and Learning 

It is assumed that an individual’s perception about departure time is based on utility, which is 

separated into I categories based on prior perception, and that the utility ݑ has been experienced ݊  times. Therefore, the individuals’ knowledge about departure times can be quantified as a 

vector ܭ(݊ଵ …݊ …݊ூ). According to Bayesian learning rules, the perceived weights of past 

observations are the same. Let vector ܲ(ଵ … (ூ…  represent an individual’s subjective 

beliefs, where pi is the subjective probability that an additional search would lead to an 
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alternative departure time with utility ݑ . Individuals’ prior beliefs are assumed to follow a 

Dirichlet distribution. Thus, the posterior beliefs will also be a Dirichlet distribution (Rothschild 

1974). This assumption is equivalent to Equation (13), where ܰ denotes the total number of 

observations (ܰ = ∑ (݊) ). 

  = ݊/ܰ (13) 

 

4.2. 2 Search Gain Vs. Search Cost 

The decision to search for a new alternative is based on the subjective search gain (which is 

hereby assumed to be based on the predicted utility improvement). It is assumed that an 

individual’s utility associated with the current departure time is ݑ. The expected gain (݃) in 

terms of utility improvement per trip from an additional search is: 

 

 ݃ =  ݑ) − (௨வ௨)(ݑ  (14) 

Equation (14) shows how the subjective search gain is calculated as the search process continues 

in the model. In order to initiate the search process, the perceived search cost needs to be 

compared with the search gain. The perceived search cost is assumed to be constant for the same 

traveler. If an individual stops searching after n rounds of search, the perceived search cost for 

this individual must be lower than the expected search gain after (݊ − 1) searches such that 

search n is necessary, while it must be higher than the expected search gain after n searches such 

that search (݊ + 1 ) does not occur. These lower and upper bounds of search cost can be 

calculated using Equation (15). The average of these two bounds is used as an estimate of the 

perceived search cost (ܿ): 

 

 ܿைௐ = ݃ = ∗ݑ − ௫,݊ݑ + 1  (15-a) 

 

 ܿுூீு = ݃ିଵ = ∗ݑ − ௫,ିଵ݊ݑ  (15-b) 
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 ܿ = 12 (ܿைௐ + ܿுூீு) (15-c) 

The utility function adopted here was empirically estimated using survey data. More details 

about this survey can be found in Zhang and Xiong (2012). The function consists of three 

explanatory variables, including travel time, schedule delay early and schedule delay late. It is 

estimated following Small (1982)’s multinomial logit model specification. In the same survey, a 

number of individuals were asked about the order by which alternative departure times were 

sequentially searched. This information was used to empirically derive the distribution of 

perceived search costs. 

 

4.2. 3 Search Rules 

The search for alternatives is obviously not random because travelers first tend to adapt their 

choice to their schedule and then avoid extremely high congestion. If-then rules were selected to 

represent these departure time search heuristics given their capability of replicating human 

decision-making processes and minimum required computational resources. The latter is 

especially important for the microscopic traffic simulation model since a half million 

independent decision agents are involved. 

 

The data set used to derive search rules was collected from commuters on the Capital Beltway. 

They were asked to recall the order of the alternative departure times they had first considered 

and then actually used for their commute trips. The variables used in the classifier included: 

arrival schedule delay early (ASDE), arrival schedule delay late (ASDL), travel time (TT) and free 

flow travel time (TT*). The following equations define the delay variables (i.e. ASDE, ASDL, 

and Delay). In the equations, “PAT” denotes the preferred arrival time; “AT” denotes the actual 

arrival time; and “Delay” measures the difference between the actual travel time (TT) and the 

free flow travel time (TT*), which indicates the congestion level. 

 

ܧܦܵܣ  = max (0, ܶܣܲ −  (a-16) (ܶܣ

 

ܮܦܵܣ  = max (0, ܶܣ −  (b-16) (ܶܣܲ
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ݕ݈ܽ݁ܦ  = (ܶܶ − ܶܶ∗)/ܶܶ∗ (16-c) 

Various machine learning algorithms (Witten and Frank, 2000) are able to derive if-then rules 

using the collected survey data. From four popular algorithms for deriving if-then classification 

rules, including C4.5 (Quinlan, 1986), PRISM (Cendrowska, 1987), PART (Frank and Witten, 

1998), and RIPPER (Cohen, 1995), PART was chosen for its superior cross-validation accuracy. 

 
Search 60+ min earlier, if 

 [ASDL> 70] (14.0/1.0)        Rule 1 

Search 30-60 min earlier, if 

 [45 <ASDL<= 70] (12.0/4.0)        Rule 2 

Search 0-30 min earlier, if 

 [ASDL> 0 AND Delay>0] (11.0/1.0)       Rule 3 

Search 0-30 min later, if 

 [0 <ASDL<= 30 AND Delay> 40%] (4.0)      Rule 4 

OR [ASDL<= 10 AND ASDE<= 40 AND Delay<=50% AND TT<= 65] (18.0/3.0)  Rule 5 

Search 30-60 min later, if 

 [ASDL = 0] (13.0/2.0)        Rule 6 

Search 60+ min later, if 

 [ASDE> 75] (12.0/1.0)        Rule 7 

OR [ASDE> 45 AND Delay>10%] (6.0/1.0)       Rule 8 

Otherwise, search 0-30 min earlier.        Rule 9 

 

4.2. 4 Decision Rules 

As discussed in Section 4.2.3, a new departure time alternative is identified after each round of 

search. The alternative is either accepted or rejected. This decision is determined by a set of 

decision rules used to describe departure time switching behavior. Unlike the utility 

maximization theory, this assumption about the decision step does not presume complete 

information processing and allows for historical dependencies. The decision rules are again 

derived from a survey experiment conducted in Spring and Summer 2011. Subjects’ actual 

departure time changing behaviors were observed from the survey. Decision rules were extracted 
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using a machine-learning algorithm. A more detailed explanation about the experiment can be 

found in Zhang and Xiong (2012). 

 

The final decision rule set consists of six rules, presented below. RIPPER is chosen for its better 

predictive performance based on dataset used in this study. The variables used in the decision 

rules include: preferred arrival time (PAT), departure time (DT), preferred departure time (PDT), 

travel time (TIME), household income (INCOME), trip purpose (PURPOSE), fuel cost (FC), and 

toll (TC). The variable none-peak is a dummy variable that equals one if the trip occurs in off-

peak hours. “∆” denotes changes or percentage changes (i.e. alternative departure time attributes 

– original departure time attributes). 

 

Switch to the alternative departure time, if 

[∆TIME<=-35% and ∆FC<=-8%] (126.0/60.0)      Rule 1 

[∆TC <= $2.5 and ∆ASDL<= -48%] (43.0/13.0)      Rule 2 

[∆TC<= $2.4 and INCOME>= $150K and ∆ASDL<= -31%] (21.0/3.0)   Rule 3 

[none-peak = 1and PURPOSE = Other and ∆TIME<=-8% and ∆ASDL<= 53%] (17.0/0.0)  

            Rule 4 

[∆ASDE<= -20% and ∆TC<=$0.7] (12.0/1.0)      Rule 5 

Otherwise, continue to use the current departure time. (1203.0/181.0)   Rule 6 

 

4.3 MODEL INTEGRATION 

After individual travel demand models and dynamic network supply models were calibrated, 

models were integrated for impact studies of new infrastructure and network management 

strategies. Figure 8 illustrates the implementation process of the integrated model. Based on 

changes in network structure, operation strategies, or travel demand management policies, the 

calibrated dynamic traffic simulation model simulates vehicle movement under new network 

conditions, and predicts the updated network performance measures, such as link travel time. 

The model then updates the path travel time pattern and predicts route adjustments. This process 

continues until a stable path flow pattern is reached. Under the new path flow patterns, the time-

dependent delay patterns between the same Origin-Destination pair change. Individual travelers 
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may suffer additional delay, which prevents them from reaching their destination at the desired 

arrival time. The agent-based departure time model is then called to predict individual departure 

time adjustment based on factors such as the desired arrival time, penalty for late or early arrival, 

and disutility associated with travel delay. The time-dependent delay patterns predicted by the 

dynamic traffic simulation model are crucial inputs for the departure time choice model. This 

information is too coarse for application and may be completely unavailable with conventional 

regional planning models. Individual choices of departure time are aggregated into updated time-

dependent OD demand tables and then a new iteration of simulation is conducted. This process 

simulates the learning-and-adapting process and stops when no travelers have incentive to adjust 

their departure time any further. At that time, network performance prediction under new 

conditions is obtained. 

    

 
Figure 8. Flowchart of the Integrated Model 

 



 MD-13-SP109B4P Project Final Report           UMD Transportation Systems Research Lab                  38 
 

 

5.1 ICC IN TRANSMODELER 

MD 200, the Inter-County Connector (ICC), was built in the TransModeler based on Google 

Earth Map and the ICC blueprint provided by SHA. Please refer to the purple line in Figure 9 for 

its location relative to the rest of the regional network. It was then integrated with the rest of the 

network, with interchanges properly connected according to the blueprint. 

 

 
 

Figure 9. The Inter-County Connector Model (purple line in the middle) in TransModeler 

 

CHAPTER 5: BEFORE AND AFTER STUDY OF ICC 
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5.2 ICC TOLL RATE 

The ICC is a tolling facility. The pricing scheme for two-axle vehicles with E-ZPass, an 

electronic toll transponder, during different time periods is summarized in Table 1. If a vehicle 

without E-ZPass uses the ICC, a $1 video-processing fee is added to the total price and a bill is 

sent to the vehicle’s registration address. 

 

Table 1. Pricing Scheme of Inter-County Connector 

Section: I II III IV V 

Peak $1.45 $0.60 $0.75 $0.65 $0.70 

Off-Peak $1.15 $0.50 $0.60 $0.55 $0.55 

Overnight $0.60 $0.40 $0.40 $0.40 $0.40 

 

5.3 BEFORE-AND-AFTER STUDY OF ICC 

Given the pricing scheme and the value of time distribution among travelers in the study area, 

the choice decisions and the corresponding network condition can be simulated. Figures 9 and 10 

present the average Level of Service (LOS) during morning peak hours on freeways and major 

arterials in the study area with and without ICC, respectively. All LOS levels are defined 

according to Highway Capacity Manual 2010. Green represents the free flow condition (LOS A), 

and red means very congested conditions (LOS F).  As these figures show, the opening of ICC 

does not significantly change the congestion level on freeways. However, it does help to reduce 

the level of congestion on major parallel arterials corridors such as MD 28 and Randolph Road. 

It also helps to somewhat improve traffic conditions on major north-south arterial roads in the 

area, including MD 97, MD 182, and MD 650. The ICC itself is not congested under current toll 

rate and demand level. 
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Figure 10. Level of Service Map with ICC 

 

 
Figure 11. Level of Service Map without ICC 
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The quantitative network performance measures before/after ICC introduction and are 

summarized in Table 2. According to the model, ICC attracts about 9,000 trips during the 

extended morning peak period, which generate revenue of about $17,000. The ICC reduced both 

the average delay and the stop time. However, the total number of stop time increases slightly 

according to the model, potentially due to the fact that the ICC introduced several new signal-

controlled intersections at the interchanges with local arterials. 

 

Table 2. Network Performance and Revenue Comparison with and without ICC (Moring 

Peak 5:00AM – 10:00 AM) 

Variables 
Base Case ICC Tolling 

Mean Std. Dev. Mean Std. Dev. 
Delay (min.) 10.97 14.43 10.40 14.48 

Stop Time (min.) 6.33 11.99 5.86 11.00 

# of Stops 9.58 14.45 9.74 16.06 
ICC Usage N/A 9,187 

Toll Revenue N/A $17,768.80 
 

Compared to the conventional demand analysis based on regional planning model, the integrated 

model provides a more detailed comparison with a diverse set of measures. For example, 

measures such as the number of stops and stop time cannot be obtained through conventional 

models. Moreover, it allows researchers to focus on different sub-areas within the study area. For 

example, researchers can focus on one corridor, or one Traffic Analysis Zone, while still 

considering the impact of travel behavior changes in the larger area. However, to fully benefit 

from this mesoscopic model, more calibration and validation work on both individual travel 

behavior and aggregated network performance MOEs should be conducted in future research. 
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This study develops a mesoscopic model for the before-and-after study of the Inter-County 

Connector. It is in line with recent efforts by SHA in developing effective modeling tools for 

traffic analysis and travel forecasting. Examples include the I-270 microscopic traffic simulation 

model and the Maryland Statewide Transportation Model (MSTM). A comprehensive analysis of 

many emerging issues in transportation operations and planning at the corridor, multi-corridor, 

and even statewide levels requires the integration of both microscopic simulation model and 

macroscopic travel demand models. This study bridges such a gap by developing a mesoscopic 

model that draws strengths from both. 

 

The integrated models are capable of capturing detailed traffic dynamics and impacts of traffic 

operation improvement. At the same time, the scale of the integrated model is large enough to 

capture any regional impacts. A route diversion model and an agent-based departure time choice 

model are developed and integrated to predict individual behavioral reactions to network changes 

This allows for the integrated model to reflect both spatial and temporal traffic demand 

adjustment and regional traffic dynamics. 

 

This study benefits from previous data collection efforts by both SHA and the research team. 

Both individual travel behavior models and dynamic network supply models are calibrated 

against local data collected from the Washington D.C. Metropolitan area. The calibrated model is 

then applied to evaluate the network performance before and after the Inter-County Connector is 

opened as a tolling facility. The results indicate that after its opening, the new ICC would 

initially attract around 9,000 users during the morning peak period and would help reduce both 

delay and stopping time in the study area. 

 

For a more robust prediction and policy evaluation, more research work is necessary. Signal 

timing plans have a significant impact on local traffic dynamics and network performance. 

Among the 466 signal-controlled intersections in the current model, only 80 of them have 

implemented real signal-timing plans. The model will be significantly enhanced if real signal-

timing plans could be implemented at all signal-controlled intersections. 

CHAPTER 6: CONCLUSIONS AND FUTURE STUDY 
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As this study demonstrates, it is a challenge to calibrate a large-scale microscopic traffic 

simulation model. In practice, the calibration process is usually divided into several steps in 

order to make it tractable. Researchers usually target a good match of traffic volume on freeways 

and major arterials and then move to minor streets. This usually involves a repetitive process.  

Researchers also have to go back and forth to improve the calibration results of volume and 

speed patterns. Results in this study reflect the best results the research team can achieve given 

current time and data availability. Given the size of the network and the number of unknowns, a 

more advanced calibration algorithm is needed for future studies and applications. Moreover, an 

efficient calibration may also involve good heuristics and engineering judgment. Findings from 

the current study may better inform future research efforts. 

 

Applications of the integrated mesoscopic model go well beyond the before-and-after study of 

new network infrastructure. Given its sensitivity to changes in both network conditions and 

travel demand shifts, it can be applied to study a wide spectrum of transportation-related 

problems, including traffic operation improvement, dynamic pricing strategies, new travel 

demand management policies and incident management policies. 

 

 



 MD-13-SP109B4P Project Final Report           UMD Transportation Systems Research Lab                  44 
 

 

Ashok, K., Ben-Akiva, M.E. (1993). Dynamic origin-destination matrix estimation for real-time 

traffic management systems. In Transportation and Traffic Theory (Daganzo, C. F., eds.), 

Proceeding of the 12th International Symposium, Elsevier, pp. 465-484. 

Baltimore Metropolitan Council (BMC). (2004). Transportation 2030. The Baltimore Regional 

Transportation Plan. 2004 

Barceló, J. and Casas, J., (2005). Dynamic network simulation with AIMSUN, Simulation 

Approaches in Transportation Analysis, Vol. 31, pp57-98 

Ben-Akiva, M.E., and Ramming, M.S. (1998). Lecture Notes: Discrete choice models of traveler 

behavior in networks. Prepared for Advanced Methods for Planning and Management of 

Transportation Networks, Capri, Italy, 1998. 

Bertsekas, D, (1976). On the Goldstein–Levitin–Polyak gradient projection method, IEEE Trans. 

Auto. Control 21, 174–183 

Bhat, C.R., Zhao, H., Popuri, Y, Stinson, M., and Poindexter S. (2003). Transportation Control 

Effectiveness in Ozone Non-Attainment Areas: Final Report, Texas Department of 

Transportation, U.S. Department of Transportation, Federal Highway Administration. 

Börjesson, M. (2008). Joint RP-SP data in a mixed logit analysis of trip timing decisions. 

Transportation Research Part E. Vol. 44, pp.1025–1038. 

Cascetta, E., Inaudi, D., Marquis, G. (1993). Dynamic estimators of origin destination matrices 

using traffic counts. Transportation Science, Vol. 27(4), pp. 363-373. 

Cascetta, E., Russo, F., Viola, F.A., and Vitetta, A. (2002). A model of route perception in urban 

road networks. Transportation Research Part B. Vol. 36(7), pp. 577-592. 

Cendrowska, J. (1987). PRISM: An algorithm for inducing modular rules. International Journal 

of Man-Machine Studies, Vol. 27, pp. 349-370. 

Chen, A., Lee, D.H., and Jayakrishnan, R. (2002). Computational study of state-of-the-art path-

based traffic assignment algorithms, Mathematics and Computers in Simulation, Vol. 59 

(6), pp. 509-518 

Cohen, W. W. (1995). Fast effective rule induction. In: PRIEDITIS, A. & RUSSELL, S. (eds.) 

Twelfth International Conference on Machine Learning. Morgan Kaufmann Publishers. 

REFERENCES 



 MD-13-SP109B4P Project Final Report           UMD Transportation Systems Research Lab                  45 
 

Crunkleton, J. L. (2008). Congestion Pricing for the Capital Beltway, Master Thesis, University 

of Maryland, College Park.  

De Jong, G., Daly, A., Pieters, M., Velley, C., Bradley, M., and Hofman, F. (2003). A model for 

time of day and mode choice using error components logit. Transportation Research Part 

E. Vol. 39, 245-268. 

Ettema, D., Tamminga, G., Timmermans, H., and Arentze, T. (2005). A micro-simulation model 

system of departure time using a perception updating model under travel time 

uncertainty. Transportation Research Part A, Vol. 39, 325-344 

Fisk, C.S. (1988). On combining maximum entropy trip matrix estimation with user optimal 

assignment. Transportation Research Part B, Vol. 22(1), pp. 245-250. 

Frank, E. and Witten, I. H. (1998). Generating accurate rule sets without global optimization. In: 

SHAVLIK, J. (ed.) Fifteenth International Conference on Machine Learning. Morgan 

Kaufmann Publishers. 

Gomes, G., May, A., and Horowitz, R. (2004). Congested Freeway Micro-simulation Model 

Using VISSIM, Transportation Research Record: Journal of the Transportation Research 

Board, Vol. 1876, 2004, pp. 71-81 

Jayakrishnan, R.,W.K. Tsai, J.N. Prashker, S. Rajadhyaksha, (1994). A faster path-based 

algorithm for traffic assignment, Transportation Research Record. 1443, pp. 75–83. 

Jin, X. (2007). Toward Time-of-Day Modeling for Long Distance Trips, Doctoral Dissertation, 

University of Wisconsin, Milwaukee. 

Jintanakul,K., Jayakrishnan, R. and Stern, H.S. (2011). An Estimation Framework for Time-

dependent Origin-Destination Trip Tables with Sampled Vehicle Trajectories and 

Observed Link Counts, Transportation Research Part C. 2011, in press.  

Lemp, J.D., Kockelman, K.M., and Damien, P. (2010). The continuous cross-nested logit model: 

Formulation and application for departure time choice. Transportation Research Part B. 

doi:10.1016/j.trb.2010.03.001 

Lin, P.W., Chang, G.L. (2006). Modeling measurement errors and missing initial values in 

freeway dynamic origin–destination estimation systems. Transportation Research Part C, 

Vol. 14(6), 2006, pp. 384-402. 

Liu, S., Fricker, J. D. (1996). Estimation of a trip table and the Θ parameter in a stochastic 

network. Transportation Research Part A, Vol. 30(4), pp. 287-305. 



 MD-13-SP109B4P Project Final Report           UMD Transportation Systems Research Lab                  46 
 

Nielson, O.A. (1997). Multi-path OD-Matrix Estimation (MPME) Based on Stochastic User 

Equilibrium Traffic Assignment. Presented at the 76th Annual Meeting of Transportation 

Research Board, January 12-16, Washington D.C. 

Prevedouros, P.D. and Wang Y. (1999). Simulation of Large Freeway and Arterial Network with 

CORSIM, INTEGRATION, and WATSim, Transportation Research Record: Journal of 

the Transportation Research Board, Vol. 1678, pp. 197-207 

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, Vol. 1, pp. 81-106. 

Rothschild, M. (1974). Searching for the Lowest Price When the Distribution of Prices Is 

Unknown. Journal of Political Economy, Vol. 82, pp. 689-711. 

Saleh, W. and  Farrell, S. (2005). Implications of congestion charging for departure time choice: 

Work and non-work schedule flexibility. Transportation Research Part A. Vol. 39 (7), pp 

773-791. 

Small, K.A. (1982). The scheduling of consumer activities: work trips. American Economic 

Review. Vol. 72, pp. 467–479. 

Small, K. A. (1987). A discrete choice model for ordered alternatives. Econometrica. Vol. 55(2), 

pp. 409-424. 

Tavana, H., Mahmassani, H. (2001). Estimation of dynamic origin-destination flows from sensor 

data using bi-level optimization method. Proceeding of the 80th Annual Meeting of the 

Transportation Research Board (Paper No. 01-3241),  

Van Zuylen, H.J., Willumsen, L.G. (1980). The most likely trip matrix from traffic counts. 

Transportation Research Part B, Vol. 14, pp.281-293. 

Witten, I. H. and Frank, E. (2000). Data Mining. San Francisco, Morgan Kaufmann Publishers. 

Wojtowicz, J., Wallace, W. ,Murrugarra R.I., Sheckler, R., and Morgan D. (2011). The Role of 

Transportation in Responding to a Catastrophe at a Planned Special 

Event,http://www.homelandsecurity.org/DHSUnivSummit2011/Wojtowicz_White%20Pa

per_04May11.pdf, accessed on July 20, 2011 

Zhang, L. (2007). Developing a positive approach to travel demand forecasting: Theory and 

model. Traffic and Transportation Theory. Vol. 17, pp. 136-150. 

Zhang, L. and Xiong, C. (2012). A positive model of departure time choice and peak spreading 

dynamics. Working paper, Department of Civil and Environmental Engineering, 

University of Maryland. Submitted for presentation at the 2012 TRB Annual Meeting. 


