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Chapter 1: Introduction 

1.1 Research Background 

Traffic incidents, including disabled vehicles blocking lanes, fire, road debris, construction, 
police activities, and vehicle crashes, have long been recognized as the main contributors to 
congestion on highway networks and the related adverse environmental impacts. For example, 
Skabardonis et al. (2003) discovered that incident-related delay makes up 13 to 30 percent of the 
total delay during peak periods, based on analysis of two freeway corridors in California. A more 
comprehensive study by the Federal Highway Administration (FHWA) (2005) revealed that 
about 25 percent of congestion in the U.S. is incident-related. Furthermore, Lindley (1987) found 
that non-recurrent traffic congestion due to incidents is responsible for up to 60 percent of the 
total freeway delays in the United States.  
 
Unlike recurrent congestion that is predictable and follows well-defined temporal and spatial 
patterns, non-recurrent congestion is random both in occurrence and duration due to the nature of 
the incidents (i.e., unpredictability of time, space and severity). Thus, an efficient and effective 
incident management system, including detection, response, clearance, and network-wide traffic 
management is urgently needed to contend with this common issue.  
 
A large number of studies have proven that a well-designed incident management program can 
substantially reduce non-recurrent congestion by decreasing incident duration and efficiently 
diverting traffic. The service patrol program in Hampton Roads, Virginia, one such example of 
incident management, has reduced the average duration of these occurrences by 70.7 percent 
(Ryan, 2007). Northern Virginia has reported a decrease of 15.6 percent in average incident 
duration for crashes, 25 percent for roadway debris, and 17.2 percent for breakdowns (Dougald 
and Demetsky, 2008). Also, CHART (Coordinated Highways Action Response Team) in 
Maryland has been able to reduce the average incident duration by approximately 25 percent 
over the last seven years (Chang and Rochon, 2009). In an attempt to reduce traffic flow and 
decrease the risk of spillback, TIMS (Traffic and Incident Management System), a detour 
operation system in Philadelphia, reroutes vehicles immediately following any detected major 
incident. Since its implementation in 1993, there has been a 40 percent reduction in freeway 
incidents, a 55 percent decrease in freeway closure time, and an eight percent reduction in 
incident-severity rate (Taylor, 1997).  
 
An ideal incident management system generally consists of several technical components. For 
example, it may require input data, such as incident and traffic related information, so that the 
estimated maximum impact area may be precisely determined. Others may include the evolution 
of the traffic queue, the predicted travel time, and the projected resulting delays for motorists. 
However, due to the complex interactions of factors involved and the difficulty of obtaining 
reliable data, it is quite a challenge to develop such a system. Therefore, in this study, we first 
investigated the characteristics of the critical factors and their connection to the incident impacts. 
The results from this investigation served as the basis for the development of the principal 
system components, including strategies for optimally allocating available resources and models 
for predicting incident clearance durations, incident-induced impacts, and optimal detour plans.  
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1.2 Research Objectives  

It is widely recognized that the effectiveness of an incident management system is heavily 
dependent on a reliable estimate of incident duration, the time between its onset of an incident, 
and its complete removal. In fact, this element is one of the key input variables of most models 
used in state-of-the-art incident management systems. However, for the reasons stated above, 
development of a reliable model for estimating such information remains in its infancy. 
Therefore, the first objective of this research was to develop a system for predicting the duration 
of a detected incident and for identifying critical associated factors, as well as how they are 
interrelated.  
 
The second research objective was to develop operational tools for minimizing the incident 
impact, depending upon its estimated duration. Such a tool would fulfill two essential functions: 
(1) producing an effective deployment strategy for available incident response units, and (2) 
offering a decision-making mechanism to help control center staff determine the necessity for 
detouring/diverting traffic. With a reliable model for predicting incident duration, coupled with 
an effective tool for response operations as well as managing incident-induced impacts, traffic 
operators would be able to contend with non-recurrent congestion on highway networks more 
efficiently and more effectively.  
 

1.3 Report Organization 

Based on the proposed research objectives, the primary research tasks were organized into five 
chapters. Figure 1.1 illustrates the organization of this study and the logical connections among 
its principal tasks. A brief description of each chapter is presented below: 
 

o Chapter 2 illustrates the overall structure of the proposed system. It discusses in detail 
how the key technical components are integrated to ensure the smooth functioning of all 
essential systems. The inputs and outputs for each component and the interrelations 
between key models in the operational process are examined. 

o Chapter 3 presents the results of an effective incident response program. A detailed 
description of an integer programming model, which was developed to determine the 
optimal set of locations for available emergency response units, constitutes the core of 
this chapter. Also included, is an analysis of extensive tests of the model’s performance 
and a comparison of other existing models. 

o Chapter 4 summarizes the research findings on critical factors and their interrelationships 
related to incident clearance duration using the association rules technique. It also 
includes an illustration of the development procedure for an integrated system designed 
to estimate the clearance duration of a detected incident. The proposed integrated system 
is composed of a Sequential Classifier with Association Rules (SCAR) and two 
supplemental models. Also, the proposed system is evaluated and compared to several 
other state-of-the-art approaches.  

o Chapter 5 discusses critical key factors in the implementation of detour/divert operations. 
These factors are integrated into an Analytical Hierarchy Process (AHP) to constitute the 
hybrid multi-criteria decision support system. The team also analyzed a case study which 
has been put through the developed system. 
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o Chapter 6 provides a discussion of the contributions of this project to our field and 
indicates directions for future research, including both theoretical refinement of the 
proposed models and development of operational tools to ensure that the system 
functions more efficiently in practice. 

o Appendix summarizes the results of a comprehensive literature review regarding each 
key component of an incident management system, including incident response 
management strategies, incident clearance duration estimation/prediction models, and 
detour decision support models. 
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FIGURE 1.1 Research Report Organization 
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Chapter 2: The Structure of the Proposed Incident Management System 

2.1 Introduction 

As discussed in Chapter 1, a well-designed incident management system can substantially 
decrease non-recurrent congestion by reducing the impact of incidents. Over the past several 
decades, many states in the U.S. have adopted a traffic incident management system (MDOT, 
2002; WSDOT, 2007; TTI, 2009; WisDOT, 2010). Although a series of national guidelines and 
initiatives have been developed in the U.S., the discrepancy in available resources often 
necessitates that such a system be re-structured and tailored to local needs to ensure greater 
efficiency in practice (Jin et al., 2014). 
 
In this chapter, the inner workings of the incident management system proposed for the state of 
Maryland are introduced. The proposed system was developed to enhance the existing system, 
based on the available resources, infrastructure, and traffic conditions. It consists of several 
individual modules and embedded technical models to help responsible agents maximize their 
decision-making ability. In addition, the system’s structure and how it will work to mitigate the 
impact of a detected incident with the assistance of all embedded support models will be 
explained. Since such a system includes many models and algorithms, the last section will 
highlight the key functions of the developed models. 

2.2 Incident Response and Operational Process 

With the proposed incident management system illustrated in Figure 2.1, the traffic control 
center personnel can take the following steps to effectively respond to traffic incidents and the 
resulting impacts on freeways: 
 

Step 1: An incident is detected through various detection sources (e.g., patrol units, 
police, CCTV, alarm systems, etc.) and reported to the operation center. 

Step 2: An incident response unit is immediately dispatched to the incident site to direct 
traffic and clear the incident.  

Step 3: Operations center will concurrently collect traffic and incident related data 
through the arrived response unit and traffic monitoring system. 

Step 4: The clearance duration for the detected incident will be estimated/predicted based 
on the data documented in the previous steps. Such information is one of the key 
input parameters for executing other primary modules designed to control traffic 
and to mitigate the impact of non-recurrent congestion. 

Step 5: Based on assessment of the data documented and the results estimated in the 
previous process, the decision on whether a detour/diverting operation is 
necessary will be made. A well-designed traffic diverting operation, grounded in 
rigorous assessment, can significantly reduce the impact of a network-wide 
incident. 

Step 6: Once a decision has been reached regarding the detour/diverting operation, this 
optimal detour/diversion plan is implemented utilizing the embedded models to 
generate proper control strategies.  

Step 7: Up-to-date traffic information will concurrently be provided to drivers affected by 
the incident to help them adjust their travel plans. 
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Step 8: The system will be maintained and enhanced through constant evaluation of its 
performance. 
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FIGURE 2.1 System Flowchart for the Incident Management Program 
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Overall, a complete incident management system can support highway agencies to more 
efficiently contend with non-recurrent traffic congestion and to assist traffic in answering some 
critical questions, such as: “How long will it take to clear the detected incident?”, “How far will 
the maximum queue reach?”, “Does projected delay and congestion during incident management 
warrant detour operations?”, and “What would be the resulting operational costs and total socio-
economic benefit of an effective detour operation?” 
 

2.3 Models Needed for the Proposed Incident Management System  

Conceivably, to ensure successful operations, such a system would utilize various technical 
models and algorithms to generate appropriate management strategies. A brief description of all 
models needed to execute each critical incident management task is summarized below: 
 

1. Models for Incident Detection 
Since it is very difficult to predict when and where an incident will occur, the first step 
for mitigating non-recurrent congestion is to employ a rapid incident detection system, 
which can use existing traffic sensors and various information sources such as GPS and 
cell phones, to minimize false alarms and maximize the detection rate. This type of 
system would certainly decrease response time.  
 

2. Strategies for Emergency Response 
Most incidents require emergency services from first-aid staff, wreckers/tow vehicles, 
police officers, etc. Since most responsible agencies have only limited resources, an 
efficient strategy to best utilize them is needed to maximize their effectiveness. Hence, 
efficient operational models or algorithms must be developed to optimally allocate the 
available resources and to maximize the resulting benefits. 
 

3. Establishing a Large Scale, Long-Term Database 
The traffic control center can use the incident management and traffic monitoring 
systems to collect various incident and traffic related data. In the long run, these 
documented data will be a valuable asset for relevant agencies to conduct essential 
operational strategy studies to enhance smoothness of operations. Instituting an effective 
system for analyzing the performance of incident response operations and the resulting 
benefits is also critical for sustaining support from both policy makers and the general 
public. 
 

4. Models to Estimate/Predict Clearance Times of Detected Incidents 
An accurate timeframe for clearance duration is one of the primary input parameters for 
estimating the impacts of incidents and assessing the operational efficiency of the 
incident management system. This will assist traffic operators in designing successful 
traffic management strategies in the network within the impacted area and disseminating 
relevant information to both pre- and en route travelers. The benefits of having an 
efficient incident response and management system can also be estimated with such 
information.   
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5. Models to Aid in the Decision of Whether a Detour/Diversion Operation is Necessary 
In many severe lane-blockage incidents, traffic detour/diversion can be one of the most 
effective ways to lessen network-wide non-recurrent congestion. However, before a 
rigorous and comprehensive assessment of a wide range of associated variables can be 
performed, one must estimate the resulting costs and benefits. To support and expedite 
the decision-making process in real time, control operators must have a reliable tool to 
assess variables, from various perspectives, to determine whether or not a traffic 
detour/diversion should be conducted. 
 

6. Models to Support the Optimal Detour/divert Plan 
An ideal incident management system would include an efficient operational model to 
generate an optimal yet feasible detour plan under the given traffic and network 
conditions. The outputs from such a model would include an optimal diversion rate, 
adjusted signal plans, and best times to activate and deactivate the detour operations. 
 

7. Models to Produce Various Traveler Information to Motorists 
Some models or algorithms introduced in the previous steps are also used to disseminate 
additional traffic information for motorists in the network. For example, the incident 
impacts, including the maximum queue length and total delay, can be estimated from the 
models described in Steps 5 and 6. Also, those models can be used to predict travel time 
based on up-to-date traffic conditions. Such information can be circulated to motorists 
through an online traveler information system which suggests best routing strategies to 
avoid congestion caused by the incident.  
 

8. A Model to Evaluate the Performance and Resulting Benefits of the Incident 
Management System 

To constantly improve the system’s performance and provide sustainable support, it is 
imperative that the responsible agencies establish a convenient and reliable tool for 
conducting performance evaluations and benefit assessments, which will help them 
identify the need for any additional resources and plan for better coordinate with other 
agencies. 

2.4 Principal Models Selected for This Study 

In view of various functional requirements for an efficient incident response and management 
system, the team focused on the following critical models for this study: 
 

(1) An operational model for optimizing incident response strategies.  
(2) A predictive model for estimating the incident clearance duration of a detected 

incident. 
(3) A decision support module to help operating agencies to evaluate the need for 

implementing detour/diversion operations. 
 
Figure 2.2 illustrates these models and how they are connected. Key input data for developing 
and implementing these models are listed below: 
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o Incident-related information: the incident site, date/time, involved vehicles, 
incident type, road closure status, pavement condition, etc.   

o Traffic-related information: current traffic volume, roadway configuration, signal 
plan, capacity, speed limits on the relevant routes. 

 

 

FIGURE 2.2 Principal Model Frameworks  

The first model, an optimization model for generating incident response strategies, requires 
information regarding available resources, historical frequency and duration of these incidents. 
This developed model seeks to identify the optimal stations and service coverage by each 
available response unit in order to minimize the total delay by incidents and increase prompt 
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response and clearance operations. A detailed description of the model’s structure, formulation, 
and evaluation is presented in Chapter 3. 
 
The second model is to predict the clearance duration for a detected incident based mainly on the 
incident information, which then served as the key input of the third model, a decision support 
model for detour/diversion operations. Also, the predicted durations of incidents will be 
documented in the incident database and will be used to update the response strategies from the 
first model. The model development process and its structure are presented in Chapter 4.  
 
The team then devised a decision support model for detour operations, which is aimed to 
determine, from various perspectives, whether or not a detour/diversion operation is beneficial. 
The developed model is expected to provide advisories and detour information for travelers 
within the boundaries of the incident impact area. Chapter 5 will present the developed model’s 
structure, key features, case studies, and the results of validation. 
 
If the models developed in this study are properly integrated with other systems such as incident 
detection systems, detour optimization system, and travel time information system, then such an 
integrated system will be able to substantially improve travel on congested highways. 
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Chapter 3: Design of Incident Response Management Strategies 

3.1 Introduction 

As discussed in Chapter 1, a well-designed incident management program can substantially ease 
non-recurrent congestion by reducing the duration of the incident or diverting traffic. Various 
studies have shown that reduction in delays can yield considerable benefits not only for motorists 
but also for the environment (Roper, 1989; Maccubbin et al., 2008; Chang and Rochon, 2009). 
This encouraging news has inspired many state transportation agencies to implement freeway 
incident management programs (Lindley, 1989), to efficiently clean up traffic congestion 
resulting from an incident blockage, and subsequently to decrease its impacts. 
 
For successful operation, such a system must be capable of locating and allocating available 
resources to minimize the effects of incidents. There are two types of strategies for dealing with 
such occurrences, patrolling and dispatching. In recent years, many transportation agencies have 
instituted patrol-based response programs to effectively detect and respond to these traffic 
incidents (Skabardonis et al., 1998; Latoski et al., 1998; Khattack and Rouphail, 2004; Haghani 
et al., 2006; Chou and Miller-Hooks, 2009). For example, Lou et al. (2010) developed a strategy 
for the Freeway Service Patrol (FSP) program by considering the likelihood of having more 
prompt responses by commercial towing services. However, some other researchers (Larson and 
Odoni, 1981; Hakimi, 1964) claimed that it is more efficient to strategically deploy response 
units and dispatch them to incident sites, based on the detection information by the traffic 
surveillance or incident detection system. Hence, the team focused on developing an incident 
response model with the dispatching rather than patrolling strategies. 
 
As summarized in the literature review (see the appendix), many dispatching strategies have 
been introduced, mainly to minimize the number of service stations and the total operational cost 
as well as to expand the number of incidents covered by a pre-determined group of facilities. The 
objectives of those studies are to minimize response time or total costs.  
 
However, research with extensive empirical data (Chang and Rochon, 2012; Olmstead, 1999) 
suggests that prompt reactions would not only lessen response times but also clearance times and 
total incident-induced delay. Based on the currently available body of knowledge, no researchers 
of deployment strategies have considered this finding in their model development; therefore, the 
team first evaluated the effects of a well-run incident management system by reviewing the 
incident data collected in Maryland. Based on these findings, in this chapter, the report will 
present a detailed new optimal location/allocation model for deploying available response units 
to minimize total delay time of detected incidents, instead of focusing on minimizing response 
time. The performance of the proposed model has been compared with both the traditional p-
median model designed to minimize response times and the experienced-based patrol strategy, 
which is currently being employed in Maryland.  
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3.2 Investigation of the Impact of the Incident Management Program on Incident Duration  

3.2.1 Incident Duration 

Incident duration can be defined as the time between the onset of an incident and its complete 
recovery (Garib et al., 1997; Nam and Mannering, 2000; Smith and Smith, 2001). According to 
the Highway Capacity Manual (TRB, 1994), an incident consists of four components, as shown 
in Figure 3.1. The first is the detection time that represents the time elapsed from the onset of an 
incident to its detection. The response time corresponds to the duration between the incident 
detection/verification and the arrival of the first emergency or incident response unit. The 
clearance time is defined as the time elapsed from the first arrival of response units (e.g., police 
or emergency vehicles) to the time that the incident is completely cleared. The last component is 
the recovery time that measures the time required for the traffic to recover to its normal 
condition. The incident duration investigated in this study included only the first three 
components: detection/reporting time, response time, and clearance time. 
 

 
*ERU: Emergency Response Unit 

FIGURE 3.1 Components of Traffic Incidents 
 

3.2.2 How Well Does the Incident Management Program Lessen Incident Duration? 

To answer this question, the team analyzed Maryland incident data collected by the Coordinated 
Highway Action Response Team (CHART) over the past several years. CHART is a highway 
incident management program operated by the Maryland Department of Transportation State 
Highway Administration (MDOT SHA) to decrease the impacts of incidents on freeways 
through rapid response, clearance, and appropriate traffic management. Their major tasks at 
incident sites include setting up traffic control devices, managing and controlling traffic flow 
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passing through the site, and assisting the fire department, police, or other agencies to expedite 
clearance.  
 
Over the past two decades, CHART has documented incident related information, such as time, 
location, incident nature, information on involved vehicles, lane closure status, etc., in its 
database (CHART II Database), and provided analysis for enhancing field operations. The entire 
dataset can be categorized into two types of incidents:  
 

o Type 1: Incidents to which CHART did not respond.  
o Type 2: Incidents in which CHART was involved in clearance.  

 
Figure 3.2 shows the clearance time distributions based on information from the 2012 CHART II 
Database. Notably, both Type 1 and Type 2 distributions were highly skewed to the right in each 
illustration; however, the clearance times in Type 2 were much shorter than those in Type 1. The 
average clearance times for Type 1 and Type 2 were 31.58 minutes and 24.31 minutes, 
respectively. The t-test results reject the null hypothesis that those average clearance times are 
equal at the 95 percent significance level. Since the target distributions were highly skewed, the 
team tested if their central tendencies are equivalent using median (laerd.com). The median 
clearance times for Type 1 and Type 2 were 21.68 minutes and 14.18 minutes, respectively. The 
t-test results also reject the null hypothesis that those values are equal at the 95 percent 
significance level. Such statistical results confirmed that clearance times of incidents in which 
CHART was involved were shorter than those in which it was not. 
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Without CHART involvement (Type 1) 

 
With CHART involvement (Type 2) 

1. Data include incidents occurring during a.m. peak hours (7 a.m. – 9:30 a.m. on weekdays) in Maryland in 2012 
2. The analysis only includes clearance times between 1 minute and 4 hours. 

FIGURE 3.2 Distributions of Clearance Times (minutes) by CHART Involvement 
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To further confirm the findings, the team divided the incidents in which CHART was involved in 
the clearance operations into two groups: 
 

o Type 2-1: Incidents during which CHART responded faster than other agencies.  
o Type 2-2: Incidents during which other agencies responded faster than CHART. 

 
Figure 3.3 presents the distribution of clearance times for each group, in which both were also 
highly skewed to the right. However, the clearance times of incidents in Type 2-1 indicated a 
range shorter than those in Type 2-2. The average clearance times for Type 2-1 and Type 2-2 
were 20.54 minutes and 33.02 minutes, respectively, while the medians were 11.33 and 21.03 
minutes, respectively. The t-test rejects the null hypothesis that those average (or median) 
clearance times are equal at the 95 percent significance level. The results further confirmed that a 
prompt response from an incident response team with sufficient traffic management expertise 
can indeed contribute to a reduction in the incident clearance duration time and resulting 
impacts.   
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CHART (Type 2-1) 

 
Other Agencies (Type 2-2) 

1. Data include incidents occurring during a.m. peak hours (7 a.m. – 9:30 a.m. on weekdays) in Maryland in 
2012. 

2. The analysis only includes clearance times between 1 minute and 4 hours. 
FIGURE 3.3 Distributions of Clearance Times (minutes) by the First Response Agency 
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Interestingly, all Traffic Operations Centers (TOCs) in Maryland have observed similar data 
patterns, as shown in Table 3.1. Note that medians of clearance times in TOC-4 show a slightly 
different pattern from others due to the relatively small sample size (only nine data were used to 
estimate the median clearance time for Type 1 incidents for TOC-4). 
  

TABLE 3.1 Average and Median Clearance Time (minutes) by Response Agency 
throughout Operations Centers 

 TOC-3 TOC-4 TOC-7 AOC SOC 
CHART not Involved 

(Type 1) 
24.40 

(18.87) 
29.06 
(6.60) 

39.92 
(30.88) 

26.42 
(18.71) 

60.04 
(52.10) 

CHART Involved 
(Type 2) 

22.47 
(13.79) 

22.53 
(13.68) 

26.12 
(16.38) 

17.55 
(12.10) 

44.23 
(22.43) 

  ⇓    

First 
Responder 

CHART 
(Type 2-1) 

20.04 
(11.61) 

19.80 
(10.97) 

21.06 
(11.60) 

12.89 
(8.75) 

35.99 
(18.17) 

Others 
(Type 2-2) 

29.18 
(20.60) 

32.09 
(23.43) 

41.43 
(27.22) 

22.47 
(15.92) 

54.95 
(33.40) 

1. Numbers in parentheses represent medians. 
2. This analysis included only Maryland incidents occurring during a.m. peak hours (7 a.m. – 9:30 a.m. on weekdays) 

in 2012. 
3. The analysis only included clearance times between 1 minute and 4 hours. 
4. MDOT SHA is in charge of seven traffic operations centers throughout Maryland: TOC-3, TOC-4, TOC-5, TOC-

6, TOC-7, AOC (Authority Operations Center), and SOC (Statewide Operations Center). TOC-5 and TOC-6 are 
open on a seasonal basis during summer and winter, respectively. 

 

Figure 3.4 illustrates the relationship between incident clearance durations and response times by 
the first responding agencies. This figure shows that the average clearance duration is likely to 
increase if CHART is delayed in arriving at the incident scene, regardless of other agencies’ 
arrival times. This further indicates that the clearance duration is highly correlated with the 
response time of incident management units.     
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1. The horizontal axis represents differences in arrived times between CHART and the first arriving agency, where 0 
indicates that CHART arrives at the scene faster than others, and 0 - 5 indicates that CHART arrives within 5 
minutes after the arrival of the first agency to respond. 
2. Data included incidents occurring during a.m. peak hours (7 a.m. – 9:30 a.m. on weekdays) in Maryland in 2012. 
3. The analysis only included clearance times between 1 minute and 4 hours. 

FIGURE 3.4 Relationships between Clearance Times and Delayed Response by CHART 

Based on these findings, one could conclude that the rapid response of incident management 
teams contributes to the reduction not only in response time but also in clearance time. 
Moreover, reduction in clearance time would increase if CHART were to arrive at the scene 
faster than other agencies. Due to the limited number of response units, not all incidents can be 
promptly responded. Thus, it is necessary to develop a strategy in which units under various 
constraints can be optimally deployed.   
 

3.3 Development of an Optimal Deployment Strategy 

3.3.1 Incident Duration and Its Effect on Total Delay 

To estimate the impact of an incident in this study, the total delay induced by incidents was used 
as a measure of effectiveness (MOE). As reported in the literature (Olmstead, 1999; Li et al., 
2006), the incident-induced delay varies with several key factors, including traffic demand, 
freeway capacity, reduced freeway capacity, and especially incident duration. As illustrated in 
Figure 3.5, prompt response and efficient clearance can reduce incident clearance time from T3’ 
to T3, and can improve the reduced freeway capacity from rc1 to rc2. As a result, the recovery 
time would be reduced from T4’ to T4, with the resulting total delay as shown in the shaded area 
(A and B). Since the data to support delay reduction due to an increased departure rate (rc2), i.e., 
area A, were not available, the team focused mainly on the reduction of delay associated with a 
reduced incident clearance time (i.e., the area B).   
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T1:  incident onset time. 
T2:  arrival time of response units. 
T3:  Time incident was cleared with the assistance of CHART. 
T3’: Time incident was cleared without the assistance of CHART. 
T4:  Recovery time with the assistance of CHART. 
T4’: Recovery time without the assistance of CHART. 
q:    Traffic arrival rate. 
c:     Traffic departure rate (roadway capacity).  
rc1:  Reduced departure rate due to lane blockages. 
rc2:  Increased departure rate with the assistance of CHART. 

 
 FIGURE 3.5 Reduced Incident Delay Due to Effective Incident Response and Management  

 

3.3.2 Model Formulation 

In this study, the team formulated a model to optimize the allocation of incident response units 
under the following assumptions:  
 
o Response units will be posted at their designated stations and be dispatched after an 

incident is detected. 
o They will return to their stations when the incident has been cleared. 
o Each response unit will manage incidents within its designated coverage area. 
o Every freeway is divided into several segments and each segment is covered by only one 

unit. 
o The demand (incidents) within a freeway segment is assumed to be evenly distributed over 

the area. 
o Response units can travel on shoulders during periods of intense traffic congestion. 

 
The network for the model consists of nodes and links that represent exits and freeway segments. 
The travel times from the assigned locations to an incident site were measured from the node of 
the assigned location to the middle point of the segment where the incident occurred, since 
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incidents are assumed to occur uniformly along the segment. The proposed model was designed 
to assign the optimal stationary location and service coverage for each response unit under the 
given constraints and incident patterns. Notations used in the model formulation are summarized 
below: 
 

o 𝐺𝐺(𝑁𝑁, 𝐴𝐴): Network of freeways, where N and A represent the sets of nodes and links, 
respectively. 

o 𝑖𝑖 and 𝑗𝑗: Index for nodes. 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁 
o 𝑥𝑥𝑖𝑖𝑖𝑖: Binary decision variable, indicating if a node j is covered by a unit at node i  
o 𝑦𝑦𝑖𝑖: Binary decision variable, indicating if a unit stays at node i 
o 𝑓𝑓𝑗𝑗: Incident frequency at node j 
o 𝑡𝑡𝑖𝑖𝑖𝑖: Travel time from i to j 
o 𝑑𝑑𝑗𝑗: Predicted delay from incidents occurring at node j 
o 𝑇𝑇𝑖𝑖𝑖𝑖: Incident duration, the sum of response time and clearance time 
o 𝛼𝛼: Proportion of incidents in which freeway incident management teams are involved in 

clearance (Type 2) at a given time  
o 𝛽𝛽: Proportion of incidents in which freeway incident management teams respond faster 

than other agencies (Type 2-1) at a given time 
o 𝑅𝑅𝑅𝑅1: Average minimum response time by other agencies in Type 1 
o 𝑅𝑅𝑅𝑅2: Average minimum response time by other agencies in Type 2-2 
o 𝐶𝐶𝐶𝐶1: Clearance times of incidents when freeway incident management teams are not 

involved in response and clearance (Type 1) 
o 𝐶𝐶𝐶𝐶2−1: Clearance times of incidents when freeway incident management teams respond 

faster than any other agencies (Type 2-1) 
o 𝐶𝐶𝐶𝐶2−2: Clearance times of incidents when other agencies respond faster than freeway 

incident management teams (Type 2-2) 
o 𝐶𝐶𝐶𝐶����1: Average clearance time of incidents when freeway incident management teams are 

not involved in response and clearance (Type 1) 
o 𝐶𝐶𝐶𝐶����2−1: Average clearance time of incidents when freeway incident management teams 

respond faster than any other agencies (Type 2-1) 
o 𝐶𝐶𝐶𝐶����2−2: Average clearance time of incidents when other agencies responded more rapidly 

than any other freeway incident management teams (Type 2-2) 
o 𝑞𝑞𝑗𝑗: Traffic volume at node j 
o 𝑐𝑐𝑗𝑗: Capacity at  node j 
o 𝑟𝑟𝑟𝑟𝑗𝑗: Reduced capacity due to an incident at node j 
o 𝑅𝑅: Available resources  

 
As previously stated, the team categorized incidents into the following three types: 
 

(1) Type 1: Incidents with no assistance from the freeway incident management teams 
(2) Type 2-1: Incidents in which incident management teams responded faster than other 
agencies: and 
(3) Type 2-2: Incidents during which other agencies responded more rapidly than the 
incident management teams  
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The proposed model was formulated as follows: 
 
object to  min

𝑥𝑥,𝑦𝑦
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑗𝑗 ∙ 𝑑𝑑𝑗𝑗(𝑡𝑡𝑖𝑖𝑖𝑖)𝑗𝑗𝑖𝑖  (Eq. 3-1) 

 
subject to 

𝑑𝑑𝑗𝑗�𝑡𝑡𝑖𝑖𝑖𝑖� =
1
2
𝑇𝑇𝑖𝑖𝑖𝑖2(𝑞𝑞𝑗𝑗 − 𝑟𝑟𝑟𝑟𝑗𝑗) �

𝑐𝑐𝑗𝑗 − 𝑟𝑟𝑟𝑟𝑗𝑗
𝑐𝑐𝑗𝑗 − 𝑞𝑞𝑗𝑗

� ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑁𝑁 (Eq. 3-2) 

 

𝑇𝑇𝑖𝑖𝑖𝑖2 = �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 1:   (𝑅𝑅𝑅𝑅1 + 𝐶𝐶𝐶𝐶����1)2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶1) , 1 − 𝛼𝛼  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 2 − 1:   (𝑡𝑡𝑖𝑖𝑖𝑖 + 𝐶𝐶𝐶𝐶����2−1)2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶2−1),          𝛼𝛼, 𝛽𝛽 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 2 − 2:   (𝑅𝑅𝑅𝑅2 + 𝐶𝐶𝐶𝐶����2−2)2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶2−2)  , 𝛼𝛼, 1 − 𝛽𝛽

 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑁𝑁 (Eq. 3-3) 

 
�𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖

= 1 ∀ 𝑖𝑖 ∈ 𝑁𝑁 (Eq. 3-4) 

 
𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖 

∀ 𝑗𝑗 ∈ 𝑁𝑁 (Eq. 3-5) 

 
�𝑦𝑦𝑖𝑖
𝑖𝑖

≤ 𝑅𝑅  (Eq. 3-6) 

 
𝑥𝑥𝑖𝑖𝑖𝑖 = [0,1] ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑁𝑁 (Eq. 3-7) 

 
𝑦𝑦𝑖𝑖 = [0,1] ∀ 𝑖𝑖 ∈ 𝑁𝑁 (Eq. 3-8) 

 

The purpose of the model is to optimally allocate available resources by minimizing total delay 
of incidents occurring in the target network. 
  
Constraint (Eq. 3-2) formulates the potential total delay caused by incidents occurring at node j 
based on the widely-used methods (Skabardonis, 1995; Olmstead, 1996; Li et al., 2006), showing 
that the total delay is a convex function of incident duration. Taking the stochastic nature of 
incident duration into account, Tij

2 can be expressed as (𝑇𝑇𝚤𝚤𝚤𝚤���)2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇𝑖𝑖𝑖𝑖) (Olmstead, 1996; Li et 
al., 2006). Constraint (Eq. 3-3) further describes the components of the incident duration time for 
each type. As shown in the formulation, the response time can be represented by travel times, if 
this information is available. 
 
Constraint (Eq. 3-4) requires that every freeway segment i must be attended. Constraint (Eq. 3-5) 
ensures that a response unit can only be dispatched from location i if it is stationed there. 
Constraint (Eq. 3-6) ensures that the total number of available response units is limited by 
available resources, 𝑅𝑅. In Constraint (Eq. 3-7), 𝑥𝑥𝑖𝑖𝑖𝑖 equals 1 if node j is covered by a unit at node 
i, and 0 otherwise. In the last Constraint (Eq. 3-8), 𝑦𝑦𝑖𝑖 equals 1 if the station of a unit is on node i, 
and 0 otherwise. 
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3.4 Empirical Study 

3.4.1 Study Site and Input Data 

The proposed model was applied to segments of I-270, I-70, and US15 in Maryland (see Figure 
3.6) to validate its performance. These roadways are 63 miles long with 30 distinct exits, which 
are managed by TOC-7 (Traffic Operation Center-7), which currently handles three field units 
for overseeing any incidents that take place in those segments in Frederick, Carroll, and Howard 
Counties. The field unit staff work 16 hours/day (5 a.m. – 9 p.m.) on weekdays. The proposed 
model was designed to determine the optimal station and coverage for each response unit within 
the TOC-7’s coverage area to minimize potential total delay depending on the nature of the 
incidents, during a.m. peak hours (7:00 – 9:30) on weekdays. 
 

 

FIGURE 3.6 Study Segments of I-70, I-270 and US 50 in Maryland 

In this study, the team assumed that the incidents occurred along the highway segments and that 
response units were deployed at nodes (i.e., highway exits) ready to be dispatched. The input 
parameters in the model varied depending on the location of incidents and could be re-estimated 
for different target areas based on the information available. The team used the following two 
major sources to estimate key model parameters: 
 

• CHART II Database 
o Incident frequency on the freeway segment i (𝑓𝑓𝑖𝑖) (Figure 4.7). 
o Average response times to incidents Type 1 and Type 2-2 (𝑅𝑅𝑅𝑅1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅2). 
o Average and variance of clearance times for each type (𝐶𝐶𝐶𝐶����𝑘𝑘 and Var (𝐶𝐶𝐶𝐶𝑘𝑘), where 

k indicates one of Type 1, Type 2-1, and Type 2-2). 
o α = 0.87 and β = 0.75. 
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o Average number of lane closures for determining the extent of reduced capacity 
(𝑟𝑟𝑟𝑟𝑗𝑗) 

• RITIS (Regional Integrated Transportation Information System)  
o Traffic volume (𝑞𝑞𝑗𝑗). 

 
Note that occurrence and frequency of incidents are often fluctuate over the study site, as 
illustrated in Figure 3.7, which posed a challenge for the traffic operators in optimizing proper 
deployment strategies. Historical data were used for computing the average response times of 
Type 1 (𝑅𝑅𝑅𝑅1) and Type 2-2 (𝑅𝑅𝑅𝑅2) (i.e., non-CHART response) incidents, whereas the travel times 
by CHART from its station i to an incident site j (tij) were used as the response times of incidents 
for Type 2-1. The parameters α and β were estimated to be 0.87 and 0.75, respectively, based on 
the same data sources (Table 3.2). According to these estimates, not only did CHART respond to 
approximately 87 percent of incidents during a.m. peak periods in the study area they also 
responded faster than any other agency in 75 percent of cases. 
 

 
FIGURE 3.7 Average Annual Incident Frequency during AM Peak Hours by Location 
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TABLE 3.2 Estimations of Input Parameters α and β based 
on the Empirical Data 

CHART Involvement & Promptness Frequency 

CHART Not Involved 
(Type 1)  27 

CHART 
Involved 
(Type 2)  

CHART was the first agency to respond  
(Type 2-1) 

130 

CHART was NOT the first agency to 
respond 

(Type 2-2) 
43 

Total 200 
• α(percentage of incidents to which CHART responded at a given time)  
      = (130+43)/200 = 0.87;  
• β (percentage of incidents to which CHART responded first at a given 

time)  
     = 130/(130+43) = 0.75 

1. Data include incidents occurring during a.m. peak hours (7 a.m. – 9:30 a.m. on weekdays)  
in the case study area in 2012. 

            2.    The analysis only includes clearance times between 1 minute and 4 hours. 
 

In addition, reduced capacity due to incidents was estimated according to the average number of 
blocked lanes (from CHART II Database) and the guidelines from Highway Capacity Manual 
(TRB, 2000). The average speed of CHART response teams traveling between the station and 
the incident site was set at 5 mph lower than the speed limit, since they can travel on shoulders 
even in cases of congestion. The proposed models were solved using CPLEX, a state-of-the-art 
optimization software package. 
 

3.4.2 Model Results and Analyses for Model Robustness 

In this subsection, the model outputs and a detailed evaluation of the results are presented, 
particularly with respect to the accuracy of the model, via a comparative study and sensitivity 
analysis. The team compared the model’s performance to two existing strategies: (1) the dispatch 
method for minimizing average response times and (2) the experience-based patrolling method 
employed by CHART. The key features of each strategy are summarized below: 
 

• Dispatching Strategy for Minimizing Average Response Time 
The traditional p-median model was  used (Hakimi, 1964; ReVelle and Swain, 1970; 
Carson and Batta, 1990) as one of the comparative models that assigns optimal positions 
for available incident response units. The p-median model is aimed to minimize their 
average response time, which has the following objective function min∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑗𝑗 ∙ 𝑡𝑡𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖 , 

where 𝑓𝑓𝑗𝑗denotes the incident frequency at node j, and tij represents the travel cost (time) 
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from station i to the affected freeway segment j. We applied the above constraints (Eq. 
3.4) – (Eq. 3.8) in subsection 3.3.2 to this model under the same conditions.  

• Experience-based Patrolling Strategy 
Currently, CHART utilizes the experience-based patrolling strategy, in which traffic 
operators place more focus on highway segments with a higher incident frequency or 
higher traffic volume. A brief description of this practice is explained below: 

o The entire coverage network area is divided into several sub-networks. The 
organizational plan is to divide the target network varying over time, based on the 
spatial distribution of total incidents in the historical data and the real-time traffic 
volumes. 

o The supervisor assigns each available unit to patrol the segments within each sub-
network. 

o Patrol officers will respond to incidents they encounter or ones they learn about 
from announcements by the operation center. 

o The response strategy is on a first-come-first-served basis, unless major incidents 
such as personal injuries or fatalities occur.  

 
We conducted a sensitivity analysis to evaluate the accuracy and efficiency of the model under 
various network conditions, including incident frequency and traffic volume on the target 
network, and the results of which are presented below. 
 

Model Outputs 

The proposed model produced two outputs: 1.) optimal stationary positions and 2.) coverage for 
a given number of response units. Tables 3.3 and 3.4 compare these outputs based on three 
strategies, minimizing the total delay (the proposed model), minimizing the average response 
time, and the CHART current practice. As shown, the assigned stations and service coverage 
based on the proposed model are somewhat different from the traditional p-median model. Note 
that others in Table 3.4 include the junction area of the three corridors (I-70, I-270, and US-15).  
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TABLE 3.3 Stations Assigned for Available Response Units by Strategy 
No. of 
Units 

Available 

Assigned Stations (Exits) by 

Dispatch minimizing total delay Dispatch minimizing  
avg. response time 

CHART  
practice 

2 I-70: 42 and 53 I-70: 52 and 68 N/A 

3 I-70: 42, 53 / I-270: 26 I-70: 52, 68 / I-270: 22 Patrolling 
all segments 

4 I-70: 42, 52, 68 / I-270: 26 I-70: 42, 52, 68 / I-270: 26 

N/A 
5 I-70: 42, 53, 68 / I-270: 26 /  

US-15: 16 I-70: 42, 52, 62, 80 / I-270: 26   

6 I-70: 42, 48, 53, 68 / I-270: 26/ US-
15: 16 

I-70: 42, 52, 62, 80 / I-270: 26 / 
US-15: 17 

7 I-70: 42, 48, 53, 62, 82 /  
I-270: 26 / US-15: 16 

I-70: 42, 52, 62, 68, 80 / I-270: 26 / 
US-15: 17 

 
 
 

TABLE 3.4 Service Coverage Assigned for Each Response Unit by Strategy 

No. of 
Units 

Available 

Assigned Service Coverage by 

Dispatch minimizing total delay Dispatch minimizing  
avg. response time 

CHART  
practice 

2 (35 - 42 on I-70), (others)  (62 - 87 on I-70), (others) N/A  

3 (35 - 42 on I-70),  
(22 - 26 on I-270), (others) 

 (62 - 87 on I-70),  
(22 - 26 on I-270), (others) 

Patrolling 
all segments 

4 
(35 - 42 on I-70),  
(62 - 87 on I-70),  

(22 - 26 on I-270), (others) 

(35 - 42 on I-70),  
(62 - 87 on I-70),  

(22 - 26 on I-270), (others) 

N/A 

5 

(35 - 42 on I-70), 
 (62 - 87 on I-70),  
(22 - 26 on I-270),  

(13-17 on US-15), (others) 

(35 - 42 on I-70),  
(59 - 68 on I-70),  
(73 - 87 on I-70),  

(22 - 26 on I-270), (others) 

6 
(35 - 42 on I-70), (48 - 59 on I-70), 

(62 - 87 on I-70), (22 - 26 on I-270),  
(13-17 on US-15), (others) 

(35 - 42 on I-70), 
(59 - 68 on I-70), (73 - 87 on I-70),  

(22 - 26 on I-270),  
(14 - 17 on US-15), (others) 

7 

(35 - 42 on I-70), (48 - 59 on I-70), 
(62 - 73 on I-70),  
(76 - 87 on I-70),  
(22 - 26 on I-270),  

(13-17 on US-15), (others) 

(35 - 42 on I-70),  
(59 - 62 on I-70),  
(68 - 73 on I-70),  
(76 - 87 on I-70),  
(22 - 26 on I-270),  

(14 - 17 on US-15), (others) 
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Comparative Study for the Model Performance 

Since the model outputs do not reflect the advantages of the proposed model over the traditional 
and current strategies, we further compared the performance of these strategies utilizing two 
measures of effectiveness (MOEs), the average travel time of the response units and the 
estimated total delay induced by incidents. To compare the impact of the fleet sizes on the 
effectiveness of each strategy, the MOEs were estimated with the fleet sizes from two to seven 
for the proposed and traditional models. 
 
As displayed in Figure 3.8, the estimated average response time was drastically decreased when 
a unit was added. However, in a fleet of more than four units, the rate of decrease becomes less 
significant. As expected, the average response time using the model was longer than that under 
the traditional p-median model over most fleet sizes explored in this study. However, the 
difference progressively decreases, and the models exhibit identical results at a fleet size of four, 
and it increases again as the fleet size increases but not as much as under the size of small fleets. 
For a fleet size of three, the size currently used by CHART, the average response time was 7.79 
minutes, which is 3.6 percent and 11.4 percent longer than that of the proposed model (7.51 
minutes) and the traditional p-median model (6.90 minutes), respectively.  

 

 FIGURE 3.8 Average Travel Times (in minutes) by Incident Response Strategies 

The team found similar patterns in total incident delay, shown in in Figure 3.9. As expected, total 
delay with the proposed model was less than that of the traditional model, which uses a fleet of 
two to seven units. The fleet sizes of two or three units showed a significant reduction in total 
delay of 80,857 and 69,390 vehicle-hours per year, respectively, compared to the traditional p-
median model. The differences in the total delay between these two strategies would be 
insignificant with a fleet size of four. For a fleet size of three, as currently used by CHART, the 
total delay was 5,612,805 vehicle-hours, which was 17 percent and 15.7 percent larger than that 

fleet size 2 fleet size 3 fleet size 4 fleet size 5 fleet size 6 fleet size 7
Traditional Model 7.88 6.90 6.22 5.89 5.60 5.40
Proposed Model 8.38 7.51 6.22 5.94 5.83 5.56
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of the proposed model (4,659,967 vehicle-hours) and the traditional p-median model (4,729,356 
vehicle-hours), respectively. 
 

 

FIGURE 3.9 Total Delays (in vehicle-hours) by Incident Response Strategies 

Based on these results, it is evident that the proposed model, if implemented in the TOC-7 
region, could outperform the traditional deployment model, which minimizes the response time 
to clear an incident, in terms of reducing the total incident-induced delay. It also outperformed 
the CHART’s current practice on both reducing average response time and the total delay. 
Although the results are based only on the incident data and traffic conditions in one region of 
Maryland, the proposed model seems to be an effective tool for improving freeway incident 
management programs, especially if the primary concern is to minimize total delay, fuel 
consumption, and emissions. 
 

Sensitivity Analysis for Key Parameters to Estimate Incident Delay 

To investigate the performance of the proposed model in various network environments, the 
team conducted a sensitivity analysis in regard to incident frequency and traffic volume in the 
target network. 
 
As shown in Figure 3.10, the estimated incident delay from both the traditional and the proposed 
strategies exhibited an increasing trend as the total incident frequency in the target network 
increases, given that all other factors remain unchanged. Overall, the delays associated with the 
proposed model are lower than those from the traditional p-median model through all examined 
incident frequency conditions. The magnitude of the reduction increased linearly, as shown in 
Figure 3.11, indicating the superior performance of the proposed model regardless of the incident 
frequency. 

fleet size 2 fleet size 3 fleet size 4 fleet size 5 fleet size 6 fleet size 7
Traditional Model 4,829,998 4,729,356 4,584,707 4,567,920 4,551,095 4,541,785
Proposed Model 4,749,141 4,659,967 4,584,707 4,566,630 4,549,114 4,532,457
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* Note: the horizontal axis represents the increase/decrease of the incident frequency in percentage from the value 
used for the empirical study.  0 and 5 indicates the incident frequency used in the case study and 5 percent increase 
from it, respectively, and so on. 

FIGURE 3.10 Model Performance (Incident Delay) by Various Incident Frequencies  
 

 
* Note: the horizontal axis represents the increase/decrease of the incident frequency in percentage from the value 
used for the empirical study.  0 and 5 indicates the incident frequency used in the case study and 5 percent increase 
from it, respectively, and so on. 

FIGURE 3.11 Reduced Incident Delay by the Proposed Model for Various Incident 
Frequencies 
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In addition, the team examined a range of traffic volumes to assess their impacts on the resulting 
incident delay. As shown in Figure 3.12, the estimated incident delays in both the traditional and 
the proposed strategies increased with the increase in traffic volume in the target network if all 
other factors remained the same. The delays based the proposed model show lower than the 
traditional model over all listed traffic volumes, and the magnitude of the reduction 
exponentially increased, as displayed in Figure 3.13. 
 

 
* Note: the horizontal axis represents the increase/decrease percentage of the traffic volume from the value used for 
the empirical study.  0 indicates the traffic volume used in the case study and 5 indicates 5 percent increase from the 
traffic volume used in the case study. 

FIGURE 3.12 Model Results (Incident Delays) for Various Traffic Volumes 
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* Note: the horizontal axis represents the increase/decrease of the traffic volume in percentage from the value used 
for the empirical study.  0 and 5 indicates the traffic volume used in the case study and 5 percent increase from it, 
respectively. 
 

FIGURE 3.13 Reduced Incident Delay by the Proposed Model for Various  
Traffic Volumes 

 
The results from the above sensitivity analysis further confirm that the developed model can 
outperform the traditional deployment models with respect to reducing the total incident delay in 
most scenarios. Thus, the proposed deployment strategy could be effectively utilized in different 
highway networks. To sum up, it is obvious that the proposed model outperformed the traditional 
deployment model, minimizing response time, in terms of reducing the total incident-induced 
delay. It also outperformed the CHART’s current practice with respect to reducing both average 
response time and total delay. Thus, the proposed model could assist traffic control centers in not 
only improving freeway incident management programs but also helping the environment with a 
subsequent decrease in fuel consumption and emissions.
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Chapter 4: Analysis of Incident Clearance Duration 

4.1 Introduction 

As described in Chapter 3, incident duration consists of three phases: detection/reporting time, 
response time, and clearance time. In general, it is difficult to know the exact timestamp of 
incident occurrence, and the CHART DB II includes records only for response and clearance 
times. Thus, in this study, incident duration is defined as the time elapsed from the incident being 
reported to its clearance, which is the sum of the response and clearance times.  
 
The nature of the response time is somewhat different from that of the clearance time. The 
critical factors associated with the response time are relatively straightforward, including 
incident severity, lane blockage status, pavement conditions, incident sites, and responsible 
operation centers, as reviewed in Chapter 3. The variance of response times is rather small, 
depending mainly on the incident response strategies operated by the responsible agencies and 
their available resources. On the other hand, the clearance duration depends on various factors 
and their complex interactions.  
 
Prior to conducting an in-depth study of the clearance time, this study conducted a preliminary 
analysis with incident data from CHART DB II, and concluded the following findings: 
 

• More severe incidents tend to require more time to be cleared. 
• Adverse environmental conditions can cause a longer clearance time. 
• Resource availability of an incident management team may affect the duration of the 

resulting incident clearance. 
 
According to the first finding, the durations to clear incidents of multiple-lane closures and/or 
fatalities are generally longer than other incidents. This pattern is more pronounced for fatality-
involved incidents, as their resulting clearance times are approximately three times longer than 
those without a fatality. Similarly, incidents involving heavy vehicles are likely to need more 
clearance times than passenger car-only incidents.  
 
The second finding reveals that incidents occurring at night and/or on snowy/icy road conditions, 
on average, are likely to need longer clearance times than those in daytime and/or with non-
snowy/icy pavement conditions. This finding is somewhat related to the first finding, since 
incidents occurring at night (8 p.m. to 6 a.m.) and/or in inclement weather tend to be more 
severe, especially for collision types of incidents owing to the short sight distance and the 
difficulty of vehicle maneuverability.  
 
Unlike the first two findings, the last finding is associated with the resource management for 
response units rather than the incident nature. The analysis results show that the average 
clearance times for the same type of incidents could vary significantly with their responsible 
operation center. This discrepancy in clearance efficiency is mostly due to the resource 
availability or operational strategies. In addition, Chapter 3 shows that the involvement of 
incident response units is likely to shorten the incident clearance time.  
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As indicated in the preliminary analysis, clearance times are correlated not only with incident 
characteristics and environmental factors, but also influenced by other factors such as incident 
management strategies and resource allocation. The complex interrelationships between all key 
factors cause the estimation of clearance time to be a more complex task.  
 
The rest of this chapter first presents the proposed model to predict incident clearance duration 
and then evaluates it by comparing with the performance of other widely used methodologies. 
The chapter closes with a summary and discussion of the findings.   

4.2 Data  

This study used the data from 6000 incidents in CHART-II database to develop the model. The 
dataset was divided into two sets using a random sampling technique - one with 4000 incident 
records for model development and the other with 2000 incident records for model validation. 
The independent variables included for model development are listed below: 
 

• Incident duration: responded and cleared timestamps; 
• Lane blockage information: number of shoulder lane blockages, total number of lanes at 

the incident location, and number of lanes blocked (in the same and opposite direction); 
• Incident type: property damage, personal injury or fatality by collision, debris, disabled 

vehicle, vehicle fire, police activities, off-road activities, and emergency roadwork; 
• Response team: participation of MDOT SHA patrol (CHART); 
• Operation Center: TOC 3, TOC 4, TOC 7, AOC, SOC, and others; 
• Detection source: CCTV, system alarm, MDOT SHA, MDOT MDTA, state police, local 

police, CHART unit, citizen, MCTMC, and media 
• Involved vehicles: number of vehicles involved, and types of vehicles involved (truck-

trailer, single unit truck, or pickup/van); 
• Time: Peak hour (AM or PM peak) indicators, weekend indicator, night indicator, and 

holiday indicator; 
• Location: region, county, road name, and exit numbers for I-495, I-95, I-695, and I-270 

only; and 
• Pavement condition: dry, wet, snow/ice, chemical wet, and unspecified. 

 
Note that the incident clearance duration in this study is defined as a series of time intervals in 
view of the following issues: 

• The data elements associated with timestamps for each incident are frequently not 
recorded in a precise manner by the control center operator; and  

• An estimated interval, such as 20 to 40 minutes, rather than a precise number, is preferred 
by incident response operators from the perspectives of both application and the system 
reliability. 

4.3 An Integrated Model to Predict Incident Clearance Duration 

The proposed model was developed through three main phases as illustrated in Figure 4.1: 1) 
filtering out outliers, 2) identifying explicit associations between factors, and 3) developing 
models to predict unexplainable datasets. The final product from this development was the 
integrated system of SCAR (Sequential Classifiers with Association Rules) with supplemental 
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models to predict incident clearance times. This algorithm was motivated from the following 
findings (Kim and Chang, 2012), using a similar source of data: 
 

• Not all clearance times can be clearly attributed to some observable factors. 
• Most short (less than 30 minutes) and long (longer than 2 hours) clearance durations 

show fairly observable relationships with key associated factors. 
• It was, however, very challenging to explicitly quantify the interactions between the 

intermediate (0.5 – 2 hours) clearance times and related variables. 
 

 

FIGURE 4.1 Flowchart to Develop the Proposed Model 
 
The first phase of model development was focused on identifying potential outliers using a well-
known algorithm, PAM (Partitioning Around Medoids). The second phase mainly investigated 
explicit relationships between the clearance duration and its associated factors and then 
developed a sequential classifier. The third phase developed a set of supplemental models for 1) 
intermediate incidents to estimate more precise clearance times; and 2) incidents that cannot be 
categorized through Phase 2 (SCAR). The details for each phase are discussed below. 

4.3.1 Phase 1: Filter out outliers 

The dataset for this study was examined to identify potential outliers with two approaches. First, 
incidents with unreliable or unreasonable information were excluded. For example, some 
incidents were recoded as being involved with more than 20 vehicles and some incidents have 
only limited information. Through this process, a total of 39 cases were excluded from the 
datasets. Furthermore, Partitioning Around Medoids (PAM), was applied to identify any other 
outliers that cannot be detected by the simple and intuitive criteria.   
 

Phase 1: Filter out outliers 

Phase 2: Sequential Classifiers with 
Association Rules (SCAR) 

Phase 3: Develop supplemental 
models for  

• Intermediate incidents 
• Incidents related to unobserved 

factors/relationships 

An integrated system  
for predicting incident 

clearance times 
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PAM uses k representatives, so-called “medoids,” (Kaufman and Rousseeuw, 1987), to construct 
k clusters by assigning each element of the dataset to the nearest medoid. The algorithm is 
composed of two steps, called BUILD and SWAP (Kaufman and Rousseeuw, 1990), as 
described below: 
 

• BUILD: Successively select k elements to obtain k initial clusters, aiming to decrease the 
object function, which is the sum of the dissimilarities from all other elements to their 
closest medoids, as small as possible. 

• SWAP: Attempt to improve the clustering by switching a selected medoid with an 
unselected element to minimize the objective function. The step is continued until the 
value of the objective function is no longer reduced. 
  

In performing the clustering analysis, the major issue was how to determine an appropriate 
number of clusters based on good clustering (Kaufman and Rousseeuw, 1990). In PAM, one uses 
“silhouettes” (Kaufman and Rousseeuw, 1990) to evaluate the quality of clusters and select the 
best number of clusters, based on the values s(i) for each element i defined as below: 
       

𝑠𝑠(𝑖𝑖) = 𝑏𝑏(𝑖𝑖)−𝑎𝑎(𝑖𝑖)
max {𝑎𝑎(𝑖𝑖),𝑏𝑏(𝑖𝑖)}

 (Eq. 4-1) 

 
Where a(i) = average dissimilarity of i to all other elements in the cluster A 

d(i, C) = average dissimilarity of i to all other elements in the cluster C (all clusters that 
are not A) 
b(i) = min

𝐶𝐶≠𝐴𝐴
𝑑𝑑(𝑖𝑖, 𝐶𝐶),  

   
From (Eq. 4-1) one can easily see that s(i) lies between the interval of – 1 and 1. Absolute values 
of negative s(i) indicate how badly the element i is classified, while positive values of s(i) 
indicate how well the element i is classified. A zero value of s(i) implies that it is not clear 
whether i should belong to A or C. After computing s(i) for every element in the study dataset, 
one can have the average value of s(i) for elements assigned to a cluster, called the average 
silhouette width of the cluster (Kaufman and Rousseeuw, 1990) and used to distinguish strong 
clusters from weak ones. Furthermore, after running the PAM algorithm for different values of k 
(the number of clusters), one can compare the resulting average silhouettes’ width for the entire 
dataset from each k and choose the “best” k, yielding the highest average silhouettes’ width.  
Note that PAM is more robust than most existing methods using an error sum of squares such as 
“k-means” (MacQueen, 1967; Steinhaus, 1957; Lloyd, 1982) or “k-median” (Jain and Dubes, 
1998; Bradley et al., 1997) algorithms, since it uses medoids, which are the most centrally 
located elements, to minimize a sum of dissimilarities (Kaufman and Rousseeuw, 1990). In 
addition, PAM can yield good clusters that are not too stretched and isolate outliers in most cases 
(Kaufman and Rousseeuw, 1990). 
 
Since PAM is mainly applied to identify potential outliers, this study focused on detecting a 
group of clusters including a small number of elements with the following steps: 
 

1. Determine the best k: the most appropriate k was found to be 8 with the average 
silhouettes 0.13. According to Kaufman and Rousseeuw (1990), this value indicated that 



37 
 

no significant structure has been found in the given dataset. However, since PAM is 
merely used to discover outliers, further analysis was conducted based on the selected 
structure.  

2. Select the weakest cluster from the selected structure: a cluster with 293 elements was 
selected for further investigation, which showed a relatively large diameter and the 
largest average dissimilarity within a cluster. 

3. Determine the best k for the selected cluster to sub-cluster: the best k was found to be 3 
with the average silhouettes of 0.23, and the weakest cluster with 36 incidents was 
chosen to be a set of outliers in this dataset. 

 
Through Phase 1, 45 and 30 incidents were excluded from the datasets for model development 
and validation, respectively. 

 

4.3.2 Phase 2: Development of Sequential Classifiers with Association Rules (SCAR) 

Figure 4.2 displays the distribution of the clearance times of the study dataset (5925 incidents), 
after excluding potential outliers identified in Phase 1. The figure shows that the distribution is 
highly skewed toward the right, and the clearance durations of most incidents (85 percent) lie 
within one hour.  
 

 

 
FIGURE 4.2 Distribution of Incident Clearance Times 
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According to the Manual on Uniform Traffic Control Devices (FHWA, 2009) the traffic 
incidents can be divided into three categories based on their durations: 1) minor: an estimated 
duration of less than 30 minutes, 2) intermediate: an estimated duration between 30 minutes and 
2 hours, and 3) major: an estimated duration longer than 2 hours. Since many response times in 
the study dataset (90 percent) lie within 10 minutes, this study considered that the incident 
duration could be replaced with the clearance time to categorize the incident classes.  
 
Table 4.1 presents the distribution of incident clearance times when they were divided into three 
classes using the standards stated in MUTCD. As observed from Figure 4.2, the time interval 
class representing clearance times less than 30 minutes (minor incidents) covers 65 – 66 percent 
of all incidents in both model development and validation datasets. Based on the previous (Kim 
and Chang, 2012) and preliminary studies, it was found that conventional statistical models may 
not perform well on such highly skewed data due to their propensity to focus on the major 
classes.  
 
 

TABLE 4.1 Distribution of Incident Clearance Times by Time Interval 
Time Interval Class (minutes) <=30 30-120 >120 Total 

Model Development Set Frequency 2570 1145 240 3955 
Ratio 65.0% 29.0% 6.0% 100% 

Model Validation Set Frequency 1300 566 104 1970 
Ratio 66.0% 28.7% 5.3% 100% 

 

The selected technique, Association Rules (AR), is a non-statistical theory-based approach that 
purely concentrates on mining the potential associations between variables. Such characteristics 
were very effective for analyzing the incident duration, since one of primary objectives for such 
a study was discovering and understanding the relationships between incident duration and their 
contributing factors. Such research findings would provide valuable information for traffic-
related agencies to plan and enhance traffic incident management programs. 
 
Therefore, this phase first discovered any obvious associations of incident clearance durations 
with related variables using the AR technique. Furthermore, this study proposed a model that 
consists of rules defined by the mined associations and had the capability to sequentially classify 
incident clearance durations, namely Sequential Classifiers with Association Rules (SCAR). 
 
This section starts with an introduction of Association Rules, followed by description of the 
SCAR development procedure and its performance. 

 

Association Rules 

Association rules mining is an effective technique to discover interesting relations between 
variables from large databases. Agrawal et al. (1993) first introduced it to detect and extract 
useful information regarding products from a large-scale supermarket transaction data in a 
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format of rules such as {onions, meats} → {burger buns}. Such information has long been 
applied for decisions on marketing activities, e.g., promotion prices, products display or 
replacement, but recently the applications of the technique have been expanded in various areas, 
including web-usage mining, intrusion detection, and bioinformatics.  
 
To define the association rules, Agrawal et al. (1993) let I = {i1, i2,…, in} be a set of n binary 
attributes called items and D = {t1,t2,…, tm} be a set of transactions called the database. Each 
transaction in D has a unique ID and includes a subset of the items in I. A rule is defined as an 
inference of the form X→ Y, where X and Y are a subset of I and X∩Y = ∅. They named X as 
antecedent or LHS (left-hand-side) and Y as consequent or RHS (right-hand-side). In the above 
example {onions, meats} is antecedent or LHS, and {burger buns} is consequent or RHS.  
 
Association rules are rules that exceed a user-specified minimum support and minimum 
confidence threshold. The support of an itemset X, supp(X), is defined as the proportion of 
transactions in the database D that include the itemset X. The confidence of a rule, conf(X→ Y), 
is defined as the proportion of transactions, including itemsets X and Y in the subset of database 
D that contains the itemset X. It can be mathematically expressed as  
 

conf(X→ Y) = supp(X ∪ Y)/supp(X) 
 
Thus, an association rule X→ Y satisfies supp(X) ≥ α and conf(X→ Y) ≥ β, where α and β are 
minimum support and confidence, respectively.  
 
Another widely-used measure to evaluate association rules is lift (Brin et al., 1997), which is 
defined as: 
 

Lift(X→ Y) = supp(X ∪Y)/(supp(X)·supp(Y)) 
 

The denominator supp(X)·supp(Y) is defined as the expected confidence, assuming that the 
occurrence of the rule antecedent is independent of the occurrence of the rule consequent and 
vice versa. Therefore, a lift is used to measure how many times more often X and Y occur 
together than expected if they are statistically independent. A lift value between 0 and infinity 
and greater lift values (>> 1) indicate stronger associations between the rule antecedent and the 
rule confidence, whereas the value near 1 implies that the occurrence of the rule antecedent has 
almost no effect on the occurrence of the rule consequent.  
 
Association rules are usually mined through a two-step process (Hahsler and Chelluboina, 2011). 
First, all itemsets satisfying the minimum support constraint, the so-called “frequent itemsets,” 
from the data set are detected. In the next step, all possible rules are generated from each 
frequent itemset, and the algorithm will discard any rules that do not fulfill the minimum 
confidence constraint. This process provides us with the idea that for a database with n distinct 
items (variables), there are at most 2n − n −1 frequent itemsets generated with more than two 
items (Hahsler and Chelluboina, 2011). Since each frequent item can generate at least two rules 
in the worst case, the total number of rules mined is in the order of O(2n). Typically, the number 
of mined association rules can be reduced at the manageable size by increasing minimum 
support, but it has a risk to remove potentially interesting rules with less support (Hahsler and 
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Chelluboina, 2011). Therefore, one cannot avoid dealing with a massive number of rules in order 
to find interesting associations between variables, which could be a major drawback of a mining 
technique with association rules.  
 

The Procedure of Model Development 

Figure 4.3 presents the overview of procedures to develop the sequential classifiers with 
association rules. Details of each step are discussed below:  
 

 
FIGURE 4.3 Flowchart to Develop the Sequential Classifiers with Association Rules 

(SCAR) 
 
Step 1: Extract association rules from the study dataset. 

Using the AR algorithm (Hahsler, Grun, and Hornik, 2005) potential association rules are 
mined from the input dataset. As discussed before, it is very challenging to identify the 
relationships between the intermediate clearance times (30 minutes – 2 hours) and their 
factors. Thus, this study set a relatively low value (0.005) for support to maximize the 
discovery of possible association rules related to intermediate clearance times even 
though they seldom occur in reality (implying a small number of supporting cases). On 
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the other hand, the value for confidence was set from an intermediate to a high level (0.60 
– 0.90) to discover reliable association rules.  

Step 2: Investigate if there is any significant rule. 
If Step1 generates many association rules, one may only need significant or interesting 
rules, based on the user-defined criteria. This study compared values for confidence and 
support among mined rules and chose them with a higher confidence and support. This 
step was a preceding assessment to narrow the feasible set to select the most critical ARs 
in the following step.        

Step 3: Build sequential classifiers by adding the best set of discovered rule(s). 
This step selected the best set of ARs from the subset of rules constructed in Step 2 and 
used it as a classifier in SCAR. Suppose that a set of m ARs is generated from Step 2 and 
denoted it by Ω. Then, n ARs were arbitrarily selected from Ω, and they were denoted by 
𝐴𝐴𝐴𝐴11, 𝐴𝐴𝐴𝐴21, …., 𝐴𝐴𝐴𝐴𝑛𝑛𝑘𝑘, where 𝐴𝐴𝐴𝐴𝑛𝑛𝑘𝑘 ∈ Ω, n is the number of ARs selected from Ω, and k 
indicates the number of trials for the arbitrary sampling of n. Note that n ARs are 
combined as a single union set that is expressed by 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =  ⋃𝐴𝐴𝐴𝐴𝑛𝑛𝑘𝑘, and confidence and 
support values for 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘  can be examined. After examining all possible 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘  this study 
selected the one that best satisfies the following objectives: 
 
• Maximize support: to reduce the system size (the number of classifiers composing 

SCAR); and 
• Maximize the classification accuracy: to decrease the generalized error rate 

 
Based on the process this step can be iterated at most �𝑚𝑚𝑛𝑛� times (= k) to examine all 
possible 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 , and this number will exponentially increase as n and m increase. Thus, 
instead of investigating all feasible sets, an alternative way to use the optimization 
approach, e.g., a generic algorithm, can be considered, and this case becomes the multi-
objective optimization problem, since the above objectives conflict with each other. In 
this study n was set to be 2 or 3 for the manageable size of feasible sets, k.   

Step 4: Build a set of sequential classifiers by adding discovered rule(s). 
The selected best set of ARs (𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 ) from Step 3 was added to the sequential classifiers to 
complete SCAR. 

Step 5: Filter out classified incidents based on the developed SCAR. 
The incidents that were classified as supporting cases for the developed classifier through 
Steps 3 and 4 were excluded from the input dataset, since their clearance times can be 
categorized by the developed SCAR system. The remaining incidents in the input dataset 
were used to develop the next classifier though the next iteration of the process; this is 
where the name of “Sequential Classifiers” with Association Rules system originates.   

Step 6: Go back to Step 1 and repeat the above steps until any stopping criterion is satisfied.  
 
This process repeats until either of the following conditions is fulfilled: 

 
• An insufficient number of incidents for further search for association rules remain 

in the input dataset. 
• No substantial association rules are found. 
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The first condition is the user-defined parameter similar to the concept of having a minimum 
number of observations included in a node for the attempt to split in Classification And 
Regression Trees (Breiman et al., 1984). In this study the iteration will stop if no interesting 
association rules satisfying the minimum requirements in Step 2 have been discovered. 

 

System Illustration and Performance 

The complete SCAR system includes 44 classifiers, and each is a union set of 2 or 3 association 
rules mined from the model development dataset as illustrated in Figure 4.4. This formation is 
inspired by the concept of “M-of-N rules,” and it is satisfied if only M of N conditions are met, 
where M < N (Craven, 1996). For example, in the 2-of-{a>b, c=d, e≠b, c<f} rules it is satisfied 
when any two of four conditions, such as {a>b, c<f}, are met. Applying it to the SCAR system M 
is set as 1, while N is set as 2 or 3 as indicated in Step 3. The example used in Figure 5.4 shows 
that the first classifier is composed of three association rules, namely AR1, AR2, and AR3, and if 
any of them is satisfied with the detected incident, then it would be likely to be cleared within 30 
minutes. If the incident satisfies none of three association rules, then further investigation would 
be conducted in the next stage (depth) with Classifier2. This process continues until any 
classifier is met or it reaches the terminal node of this system.    
 
 

FIGURE 4.4 Illustration of a Single Classifier Composing SCAR 
 
The system can classify the clearance durations of 73.1 percent and 72.0 percent of incidents in 
model development and validation datasets, respectively. Table 5.2 summarizes the performance 
results of the proposed system. 
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TABLE 4.2 Results and Performance of the SCAR system 

Clearance Duration 
Class (minutes) 

Class 
ratio 

Ratio Classified by 
SCAR # of 

Classifiers 
Intra-accuracy 

Train Test Train Test 
Minor (≤30) 64.98% 81.1% 82.4% 27 87.70% 90.37% 

Intermediate (30-
120) 28.95% 59.0% 50.5% 13 90.50% 92.51% 

Major (>120) 6.07% 55.8% 59.6% 4 75.86% 79.66% 
Total 100.00% 73.1% 72.0% 44 87.45% 90.20% 

 

TABLE 4.3 Contingency Table of Observation versus Estimation  
from the SCAR system 

Clearance Duration 
(minutes) 

Observation Intra-
accuracy Minor (≤30) Intermediate 

(30-120) Major (>120) 

Estimation 

Unclassified 487 470 106 NA 
Minor (≤30) 2040 269 17 87.70% 

Intermediate (30-120) 35 379 7 90.50% 
Major (>120) 8 27 110 75.86% 

External-accuracy 97.94% 56.15% 82.09% 87.45% 
 
 

TABLE 4.4 Contingency Table of Observation versus Prediction  
from the SCAR system 

Clearance Duration 
(minutes) 

Observation Intra-
accuracy Minor (≤30) Intermediate 

(30-120) Major (>120) 

Prediction 

Unclassified 229 280 42 NA 
Minor (≤30) 1060 104 9 90.37% 

Intermediate (30-120) 8 173 6 92.51% 
Major (>120) 3 9 47 79.66% 

External-accuracy 98.97% 60.49% 75.81% 90.20% 
 
 
Tables 4.3 and 4.4 present contingency tables for more details of the system results. Both tables 
have two different types of accuracies – intra-accuracy (accuracy by row) and external-accuracy 
(accuracy by column). The intra-accuracy is measured within classifiers, thus indicating the 
classification confidence (accuracy) of the developed classifiers. On the other hand, the external-
accuracy indicates the rate of correct classification (1− misclassification rate) across the 
observations for the target class. According to the results, the SCAR system showed a good 
capability to correctly classify Minor and Major incidents. Classifiers embedded in the system 
had high confidence to classify Intermediate incidents, but their accuracy, based on observations 
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for the target class, was relatively low, owing to misclassifications of classifiers that were 
targeting for Minor incidents.    
 
As shown in the performance result (Unclassified in Tables 4.3 and 4.4), not all incidents can be 
explained by SCAR, because some may be related to complex relations between factors and the 
other may be related to unmeasurable factors. Also, ratios classified by the proposed system vary 
among different clearance-time classes. As presented in the column named “Ratio Classified by 
SCAR” in Table 4.2, most incidents in Minor can be explained with association rules in SCAR, 
but only about half of the incidents in Intermediate and Major can by classified by the developed 
classifiers (including misclassified cases). Furthermore, the class of intermediate clearance times 
has a rather wide range from 30 minutes to 2 hours so the classification/prediction results from 
SCAR may need further refinement for practical use. For this reason, further analysis was 
conducted to supplement SCAR with additional models to classify/predict 1) the clearance times 
of incidents that were not processed by SCAR, and 2) the intermediate clearance times into more 
narrow ranges. Phase 3 illustrating these analyses is presented in the next subsection.       
  
The established SCAR can be presented in two different formats – sequential IF-THEN-ELSE 
rules or the pruned tree. Table 4.5 exemplifies SCAR in the arrangement of sequential IF-THEN-
ELSE rules, while Figure 4.5 illustrates it in the form of the pruned tree. Since the developed 
SCAR includes many classifiers, the full description of SCAR is presented in the format of 
sequential IF-THEN-ELSE rules in Appendix.  
 

TABLE 4.5 Presentation of SCAR I – Sequential IF-THEN-ELSE Rules 
No. Description of Classifier Clearance 

Time 

1 IF 
(road=I895 & incident_type=disabled) or 

(noTT=0 & noSDsh=0 & incident_type=disabled) or 
(noTT=0 & road=US50 & incident_type=disabled) 

THEN Minor (≤30) 

2 ELSE-
IF 

(OC=TOC3 & noLane=13 & county=MO & incident_type=cpd) or 
(noTT=0 & road=I495 & incident_type=disabled & pavement=dry) or 

(chart=1 & noLane=12 & road=I95 & incident_type=disabled) 
THEN Minor (≤30) 

3 ELSE-
IF 

(OC=TOC3 & SDBmain=minor & pavement=unspecified) or 
(OC=AOC_South & noLane=12 & road=US50) or 

(Weekday & incident_type=disabled & detection=CHART) 
THEN Minor (≤30) 

4 ELSE-
IF 

(totalveh=2 & incident_type=fatality) or 
(night=0 & road=other & incident_type=fatality) THEN Major (>120) 

6 Continued in Appendix 
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FIGURE 4.5 Presentation of SCAR II – Pruned Tree 

 
SCAR first assesses whether the incident entered in the system fulfills the conditions in the first 
classifier or not. If so, then the clearance time of the incident is classified as Minor and is 
predicted to be less than 30 minutes. Otherwise, it will be sent to the next classifier and 
reexamined. Through the process of SCAR development and reviewing the mined association 
rules, key findings on the relations between incident clearance times and their associated factors 
were discovered and summarized below: 

 
<Incident type> 

• If an incident type is identified as disabled vehicle(s), the clearance duration is highly 
likely to end in 30 minutes (Minor class). 

• If an incident is related to any fatality, the clearance duration is highly likely to be 
longer than two hours (Major class). 
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• If an incident occurs during peak hours on major corridors in the Washington and 
Baltimore Metropolitan regions and is involved with property damage but no heavy 
vehicles, its clearance duration is likely to end in 30 minutes (Minor class). 

•  If an incident is involved with property damage and tractor-trailer, its clearance 
duration is likely to be longer than 30 minutes (Intermediate or Major class). 

• If an incident occurs during off-peak hours or on minor roadways in suburban areas in 
Maryland and is involved with property damage, its clearance duration is likely to be 
longer than 30 minutes (Intermediate or Major class). 

• If an incident is involved with personal injuries and heavy vehicles and is detected by 
CHART, the clearance duration is likely to end in 30 minutes (Minor class). 

• If an incident is involved with personal injuries and heavy vehicles but is detected by 
other sources than CHART, the clearance duration is likely to be between 30 minutes 
and 2 hours (Intermediate class). 
 

<Detection Source> 
• If an incident is detected by CHART, the clearance duration is likely to end in 30 

minutes (Minor class). 
• If an incident is detected by other sources than CHART (SHA, polices, MDTA, 

CCTV, etc.), during daytime in urban areas, the clearance duration is likely to end in 
30 minutes (Minor class). 

• If an incident is detected by other sources than CHART (SHA, polices, MDTA, 
CCTV, etc.) and occurs at night or in suburban areas, the clearance duration is likely 
to be longer than 30 minutes (Intermediate or major class). 
 

<Night> 
• If more than half of the total number of lanes is closed due to an incident occurring 

during daytime, the clearance duration is likely to end in 30 minutes (Minor class). 
• If more than half of the total number of lanes is closed due to an incident occurring at 

night, the clearance duration is likely to be longer than 30 minutes (Intermediate or 
major classes). 

• If an incident is involved with tractor-trailer(s) and occurs during daytime, then the 
clearance duration is likely to be between 30 minutes and 2 hours (Intermediate 
class).  

• If an incident is involved with tractor-trailer(s) and occurs at night, the clearance 
duration is likely to be longer than two hours (Major class).  

 
<Pavement> 

• If an incident occurs on wet pavement (proxy factor for rainy days) at night, the 
clearance duration is likely to be between 30 minutes and 2 hours (Intermediate 
class).  

• If an incident occurs on wet pavement (proxy factor for rainy days) during the 
daytime, the clearance duration is likely to end in 30 minutes (Minor class).  
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<Region> 

• If an incident occurs in Southern or Western Maryland, the clearance duration is 
likely to be longer than two hours (Major class).  

• If an incident occurs in Eastern Maryland, the clearance duration is likely to be 
between 30 minutes and 2 hours (Intermediate class). 

• If an incident occurs in the Washington and Baltimore Metropolitan Regions, the 
clearance duration is likely to end in 2 hours (Minor or Intermediate class). 

 
These findings were consistent with observations that severe incidents causing multi-lane closure 
and/or fatalities were highly likely to last a long duration, while minor collisions were likely to 
be cleared in a relatively short time. Moreover, the clearance duration of similar incidents may 
vary significantly with their onset times in a day. For example, an incident occurring during 
peak-hours or daytime is likely to be cleared in a shorter duration than a similar one occurring at 
night. Region was also a significant factor so that incidents in urban areas were likely to be 
cleared faster than those in suburban or rural areas. An interesting finding associated with 
detection sources was that incidents detected by CHART are likely to be cleared faster than those 
detected by other sources. It confirmed the importance and contribution of incident management 
programs in addition to their prompt responses, as discussed in Chapter 3.    

 

Advantages of SCAR 

The proposed SCAR system is a recursive partitioning algorithm similar to a Decision Tree 
model, but with the following additional strengths: 
 

• Reducing the presentation scale and complexity:  
The association rule used in SCAR implies the interaction of factors so that additional 
splitting to represent the interaction is not necessary, as illustrated in Figure 4.6. This 
feature in SCAR would be more critical as more factors are related to the interaction. 
Thus, it would significantly reduce the entire scale of the complete model to improve the 
interpretability of the model. 
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FIGURE 4.6 Reduction of the Presentation Scale and Complexity of SCAR 
 

• Less sensitive to the lack of samples due to the recursive partitioning: 
In general, after sufficient iterations to expand the tree deeper, the decision tree model 
loses the capability to split further because of insufficient samples (Craven, 1996). SCAR 
can avoid this limitation due to the recursive partitioning feature (see Figure 4.7).  
Consequently, SCAR provides more opportunities to discover rules regarding the 
clearance time and its related factors.  

   

FIGURE 4.7 Prevention from the Lack of Samples in SCAR 

• Less sensitive to information loss: 
Decision tree algorithms can construct multiple different models using the same data set, 
as exhibited in Figure 4.8, and one must select one out of them.  However, SCAR 
combines these in a single model that prevents it from losing information in either 
decision tree model that is not selected as a final model.    

 
In summary, SCAR has several unique features that reduce the model size, complexity, and 
information loss, and they make SCAR more favorable than the traditional decision tree models.   
 

4.3.3 Phase 3: Supplemental Models 

The developed SCAR in Phase 2 categorizes incidents into three classes based on the 
estimated/predicted clearance times – minor, intermediate, and major – as discussed before. Each 
class defined below is based on the classification in MUTCD (2009): 
 

• Minor: the expected clearance time is less than 30 minutes. 
• Intermediate: the expected clearance time is between 30 minutes and 2 hours; and  
• Major: the expected clearance time is longer than 2 hours. 
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FIGURE 4.8 Prevention from the Information Loss in SCAR 

 
Note that the data set used in this study included 344 major incidents (5.8 percent of the total), 
with clearance times ranging from 2 hours to 15 hours. This wide range of distribution posed a 
challenge to further refine the model to estimate/predict the clearance times for major incidents.   
 
On the other hand, intermediate incidents can be further divided into the following classes based 
on the available samples: 
 

• Intermediate-sub1: the expected clearance time is between 0.5 and 1 hour 
• Intermediate-sub2: the expected clearance time is between 1 and 1.5 hour; and 
• Intermediate-sub3: the expected clearance time is between 1.5 and 2 hours 

 
Additional analysis for incidents that cannot be categorized through SCAR was also conducted. 
Since incidents not categorized by SCAR also cannot be explained with interrelationships 
between factors, the “black-box”-type machine learning algorithms were applied to develop 
models with those data sets. 
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This section discusses two potential approaches for these analyses – a support vector machine 
and a random forest – because they have been gaining popularity among various black-box-type 
machine learning algorithms. 

 

Support Vector Machine 

A support vector machine (SVM) is recognized as one of the most popular and efficient 
classification methods in the literature of learning algorithms, but has received less attention by 
the transportation community (Karatzoglou et al., 2006; Bhavsar et al., 2008). The method was 
developed based on the statistical learning theory and the structural risk minimization principle 
with solid theoretical properties (Berwick and Idiot, 2009). Thus, SVM demonstrates a unique 
advantage in solving small sample, time-varying, nonlinear and high dimensional pattern 
recognition problems (Guoguang et al., 2000; Wu et al., 2011). 
 
The key features of SVM developed by Vapnik and coworkers (Vapnik, 1998; Cortes and 
Vapnik, 1995) for binary classification can be summarized as follows (Meyer, 2011): 
  

• Class separation: As shown in Figure 4.9 (a), the goal is to find the optimal separating 
hyper-plane between two classes to maximize the “margin” between the closest points of 
two classes. 

• Overlapping classes: In cases that the separating hyper-plane cannot perfectly split into 
“yes” and “no” examples, a “soft margin” method (Cortes and Vapnik, 1995) is applied to 
allow some points inside or on the wrong side of the margin (i.e., mislabeled examples) as 
illustrated in Figure 4.9 (b). 

• Nonlinearity: For cases of a non-linear nature, a kernel method (Boser et al., 1992) is 
applied to project data points into a higher-dimensional space using kernel functions so 
that the dataset effectively becomes linearly separable, as demonstrated in Figure 4.10. 

•  Problem Solution: The entire procedure can be formulated as a quadratic optimization 
problem and can be solved with known techniques. The program to perform all such tasks 
is called a “Support Vector Machine.” 
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FIGURE 4.9 Illustrations of Support Vector Machines (Meyer, 2011) 
 

 

FIGURE 4.10 Illustration of Projection of Non-Linearly Separable Cases to the Higher 
Dimensional Feature Space (Meyer, 2011) 

 
Despite its strengths, the potential deficiency of SVMs lie in the difficulty of interpreting the 
estimation results. Similar to the neural network method, SVM is viewed by many researchers as 
a “black-box” model, because the understanding and interpretation of both the training data and 
the estimated results are quite challenging for a high-dimensional data set.  
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Random Forests 

Breiman (2001) proposed a method of random forests, an ensemble of un-pruned classification 
and regression trees, which constructs each tree (a selected classifier) using a different bootstrap 
sample (sampling with replacement) of a training data set, but the tree induction process is 
somewhat different from the traditional decision tree. Instead of using a best split among all 
variables, the random forest method first randomly chooses a subset of predictors at each node 
and uses the best among them to split the node. The algorithm for random forests is summarized 
below: 
 

1. Draw n bootstrap samples from the original data set. 
2. At each bootstrap sample, grow un-pruned classification or regression trees (CART 

(Breiman et al., 1984)) with the following process: At each node randomly selects m 
predictors and splits the node with the best among those variables. 

3. To predict new data, aggregate predictions of n trees by majority votes for classifications, 
or average for regression. 

 
Compared with many other classifiers, the random forests showed quite good results that were 
more robust with respect to noise and over-fitting (Breiman, 2001). They also handled thousands 
of input variables without deleting any outliers. However, since a random forest consists of many 
un-pruned fully-grown trees, its outputs are difficult to interpret to be considered as a “black-
box”-type model. 

 
Analysis Results for Supplemental Model 1: Estimate More Specified Intermediate 

Clearance Times  

After going through the SCAR system in Phase 2, a total of 421 incidents were categorized as 
intermediate incidents having clearance times between 30 and 120 minutes in the development 
data set. Among those, 42 incidents (about 10 percent) were identified as misclassifications. 
Thus, the estimation/prediction model development for sub-classes of intermediate clearance 
times was conducted with the correctly categorized 379 intermediate incidents.   
 
The sample sizes of sub-classes in intermediate incidents were also unbalanced, as shown in 
Table 4.6. The sub-class 1 (clearance times between 30 and 60 minutes) dominated the 
intermediate clearance times, while the sub-class 3 is only 10 percent of the total. Therefore, 
SVM and RF were highly likely to focus on the dominated class, sub-class 1, to increase their 
overall model accuracy. To balance sub-classes, weights were applied to observations, and SVM 
and RF models were developed based on the weighted observations. In addition, regression-type 
models were developed by using continuous values of clearance times, and the 
estimated/predicted clearance times were discretized with the same scheme as the one used for 
the proposed system.  
 
Tables 4.6 and 4.7 summarized the performance results based on the model development data set 
and validation data set, respectively. SVM-1 was developed without weights (used the original 
class ratios), while SVM-2 and SVM-3 were developed based on a set of weights that assigns 
higher values to intermediate-sub 2 and intermediate-sub 3 than intermediate-sub 1. SVM-reg 
and RF-reg were developed based on the continuous value form of clearance times.  
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Comparing the performance of the developed SVMs, all showed good estimation results, but 
only SVM-1 showed fairly good prediction results. Although SVM-3 was somewhat over-fitted 
and demonstrated the worst overall accuracy, it showed better performance on the sub-class 3 
(clearance times between 90 and 120 minutes) than any other SVM models. Similarly, both 
developed RF models exhibited better overall results than SVM-3, they mainly focused on 
estimating/predicting the intermediate-sub1. Since this phase focused on developing a model that 
has a better capability to estimate/predict the minor class (intermediate-sub3), SVM-3 was 
selected as the final model.  
 

TABLE 4.6 Estimation Results from SVM and RF for Intermediate  
Clearance Times Analysis 

Clearance 
Duration Class 

(minutes) 

Class 
ratio 

Accuracy 

SVM-1 SVM-2 SVM-3 SVM-reg RF-1 RF-reg 

Intermediate-sub1 
(30 – 60) 64.38% 100.0% 

(244/244) 
76.6% 

(187/244) 
55.7% 

(136/244) 
97.1% 

(237/244) 
61.9% 

(151/244) 
96.3% 

(235/244) 
Intermediate-sub2 

(60 – 90) 24.27% 32.6% 
(30/92) 

89.1% 
(82/92) 

67.4% 
(62/92) 

89.1% 
(82/92) 

33.7% 
(31/92) 

53.3% 
(49/92) 

Intermediate-sub3 
(90 – 120) 11.35% 18.6% 

(8/43) 
97.7% 
(42/43) 

100.0% 
(43/43) 

48.8% 
(21/43) 

7.0% 
(3/43) 

0.0% 
(0/43) 

Total NA 74.4% 
(282/379) 

82.1% 
(311/379) 

63.6% 
(241/379) 

89.7% 
(340/379) 

48.8% 
(185/379) 

74.9% 
(284/379) 

 
TABLE 4.7 Prediction Results from SVM and RF for Intermediate  

Clearance Times Analysis 
Clearance 

Duration Class 
(minutes) 

Class 
ratio 

Accuracy 

SVM-1 SVM-2 SVM-3 SVM-reg RF-1 RF-reg 

Intermediate-sub1 
(30 – 60) 61.27% 94.3% 

(100/106) 
54.7% 

(58/106) 
40.6% 

(43/106) 
64.2% 

(68/106) 
81.1% 

(86/106) 
85.8% 

(91/106) 
Intermediate-sub2 

(60 – 90) 29.48% 7.8% 
(4/51) 

19.6% 
(10/51) 

17.6% 
(9/51) 

35.3% 
(18/51) 

23.5% 
(12/51) 

23.5% 
(12/51) 

Intermediate-sub3 
(90 – 120) 9.25% 0.0% 

(0/16) 
18.8% 
(3/16) 

37.5% 
(6/16) 

0.0% 
(0/16) 

25.0% 
(4/16) 

0.0% 
(0/16) 

Total NA 60.1% 
(104/173) 

41.0% 
(71/173) 

33.5% 
(58/173) 

49.7% 
(86/173) 

59.0% 
(102/173) 

59.5% 
(103/173) 

 

Analysis Results for Supplemental Model 2: Estimate Clearance Times of Incidents 

Uncategorized by SCAR  

As discussed previously, SCAR was not able to categorize all incidents, since some incidents 
were associated with factors or their relationships that cannot be measured, observed, or 
identified. As presented in Table 4.2, SCAR could classify the clearance durations for 73.1 
percent and 72.0 percent of incidents in model development and validation data sets, 



54 
 

respectively. Thus, an additional study for incidents that cannot be categorized by SCAR was 
conducted in this phase. 
 
Like supplemental model 1, SVM-1 was developed based on the original class ratios (no weights 
are applied), and SVM-2 used a set of weights to balance the class ratio. SVM-reg and RF-reg 
were developed based on clearance times with the continuous value format. Tables 4.8 and 4.9 
summarize the model performance results based on the development data set and validation data 
set, respectively. SVM-1 demonstrated its good performance only for minor and major incidents, 
while the overall result of SVM-2 was not acceptable. SVM-reg was over-fitted, and RF-reg only 
focused on the intermediate-sub 2 class. Since RF-1 showed fairly good performance on 
intermediate and major incidents, it was selected to improve the estimation/prediction 
performance.  
   

TABLE 4.8 Estimation Results from SVM and RF for Incidents 
Uncategorized by SCAR 

Clearance 
Duration Class 

(minutes) 

Class 
ratio 

Accuracy 

SVM-1 SVM-2 SVM-reg RF-1 RF-reg 

Minor (≤ 30) 44.36% 96.% 
(468/487) 

13.3% 
(65/487) 

99.8% 
(486/487) 

4.7% 
(23/487) 

59.3% 
(289/487) 

Intermediate-sub1 
(30 – 60) 32.22% 26.2% 

(85/325) 
46.8% 

(152/325) 
9.8% 

(32/325) 
50.8% 

(165/325) 
82.5% 

(268/325) 
Intermediate-sub2 

(60 – 90) 10.59% 2.7% 
(3/112) 

36.6% 
(41/112) 

98.2% 
(110/112) 

28.6% 
(32/112) 

37.5% 
(42/112) 

Intermediate-sub3 
(90 – 120) 3.66% 6.1% 

(2/33) 
75.8% 
(25/33) 

97.0% 
(32/33) 

0.0% 
(0/33) 

18.2% 
(6/33) 

Major (> 120) 9.17% 63.2% 
(67/106) 

59.4% 
(63/106) 

100.0% 
(106/106) 

26.4% 
(28/106) 

50.9% 
(54/106) 

Total NA 58.8% 
(625/1063) 

32.5% 
(346/1063) 

72.1% 
(766/1063) 

23.3% 
(248/1063) 

62.0% 
(659/1063) 

 
TABLE 4.9 Prediction Results from SVM and RF for Incidents  

Uncategorized by SCAR 
Clearance 

Duration Class 
(minutes) 

Class 
ratio 

Accuracy 

SVM-1 SVM-2 SVM-reg RF-1 RF-reg 

Minor (≤ 30) 44.36% 86.0% 
(197/229) 

11.4% 
(26/229) 

33.6% 
(77/229) 

3.5% 
(8/229) 

25.3% 
(58/229) 

Intermediate-sub1 
(30 – 60) 32.22% 9.2% 

(18/195) 
36.9% 

(72/195) 
39.0% 

(76/195) 
52.8% 

(103/195) 
55.9% 

(109/195) 
Intermediate-sub2 

(60 – 90) 10.59% 0.0% 
(0/59) 

18.6% 
(11/59) 

22.0% 
(13/59) 

40.7% 
(24/59) 

13.6% 
(8/59) 

Intermediate-sub3 
(90 – 120) 3.66% 0.0% 

(0/26) 
34.6% 
(9/26) 

23.1% 
(6/26) 

11.5% 
(3/26) 

11.5% 
(3/26) 

Major (> 120) 9.17% 28.6% 
(12/42) 

45.2% 
(19/42) 

19.0% 
(8/42) 

31.0% 
(13/42) 

9.5% 
(4/42) 

Total NA 41.2% 
(227/551) 

24.9% 
(137/551) 

32.7% 
(180/551) 

27.4% 
(151/551) 

33.0% 
(182/551) 
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4.3.4 The Integrated System to Predict Incident Clearance Times  

Figure 4.11 illustrates the proposed system flow to estimate/predict the clearance time of the 
detected incident with collected information. Once an incident is reported to the traffic operation 
center with related information, such as location, type of incident, lane closure status, involved 
vehicles, and so on, the traffic operation center staff enters the information into SCAR. In 
summary, if the incident can be categorized by SCAR and the result is an intermediate incident, 
then it will be entered the supplemental model 1 for further estimation. If the incident cannot be 
categorized by SCAR, then it will go through the supplemental model 2 to be further categorized 
into one of five classes.   
 

 
FIGURE 4.11 System Flowchart to Estimate/predict Incident Clearance Times Using the 

Proposed System 

Start: Input 
Incident Info. 

 

Can be 
categorized 

by SCAR? 

Is an 
intermediate 

incident? 

Supplemental Model 1- 
estimate more specified 

clearance times 
• Intermediate-sub1 
• Intermediate-sub2 
• Intermediate-sub3 

Supplemental 
Model 2 

Output* 

Yes No 

Yes No 

*output (mins): minor (≤ 30), intermediate-sub 1 (30-60), 2 (60-90), and 3 (90-120), and major (>120) 

SCAR 
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Table 4.10 shows that the overall performance of the proposed integrated system was promising. 
The system could well estimate/predict the Minor incident clearance, while its performance on 
the clearance times for the other classes was relatively poor. Considering the ratio of the original 
sample size in the data set, the probability that one could correctly classify an incident in 
intermediate–sub3 by random guess was only 0.24. This value would not increase significantly 
even if the related agents have much experience.  On the other hand, the proposed system 
increased the probability nearly 10 times larger than the results with random guessing.  
 
 

TABLE 4.10 Performance Result from the Proposed Integrated System 

Incident Class 
Clearance 
Duration 
(minutes) 

Class ratio 
Accuracy 

Train Test 

Minor ≤ 30 65.0% 80.3% 
(2063/2570) 

82.2% 
(1068/1300) 

Intermediate-sub1 30 – 60 20.0% 38.1% 
(301/790) 

37.8% 
(146/386) 

Intermediate-sub2 60 – 90 6.6% 35.9% 
(94/262) 

24.4% 
(33/135) 

Intermediate-sub3 90 – 120 2.4% 46.2% 
(43/93) 

20.0% 
(9/45) 

Major > 120 6.0% 57.5% 
(138/240) 

57.7% 
(60/104) 

Total 100.0% 66.7% 
(2639/3955) 

66.8% 
(1316/1970) 

 

Measures of Performance to Evaluate the Proposed System 

Further analysis of the contingency tables with respect to the system outputs and the observations 
is presented in Tables 4.11 and 4.12 for the model development and validation data set, 
respectively. The numbers on the main diagonal in both tables indicate the correct 
estimations/predictions that are used to determine the accuracy in Table 4.10.  
 
 

TABLE 4.11 Contingency Table of Observations versus Model Estimations 

Clearance Duration (minutes) Observation 
≤ 30 30 – 60 60 – 90 90 – 120 > 120 

Estimation 

≤ 30 2063 236 53 11 24 
30 – 60 284 301 76 20 44 
60 – 90 163 148 94 8 25 
90 – 120 31 79 19 43 9 

> 120 29 26 20 11 138 
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TABLE 4.12 Contingency Table of Observations versus Model Predictions 

Clearance Duration (minutes) Observation 
≤ 30 30 – 60 60 – 90 90 – 120 > 120 

Prediction 

≤ 30 1068 95 20 3 11 
30 – 60 130 146 50 16 23 
60 – 90 81 96 33 9 5 
90 – 120 13 37 23 9 5 

> 120 8 12 9 8 60 
 

To compare the performance of the proposed system correctly estimating/predicting with the 
random guess, Cohen’s kappa (Cohen, 1960) and weighted kappa (Cohen, 1968) were adopted. 
Cohen’s kappa, denoted as K, is defined as follows: 
 

𝐾𝐾 = 𝑃𝑃𝑜𝑜−𝑃𝑃𝑒𝑒
1−𝑃𝑃𝑒𝑒

   (Eq. 4-2)  

 
where Po and Pe represent the proportions of observed and expected agreements (chance 
agreement), respectively. K represents how much two raters agree with each other when 
excluding the probability that they agree by chance. Thus, K=1 implies that two raters 
completely agree with each other, while K=0 indicates that they agree only by chance. When 
Cohen’s kappa was applied to evaluate the model’s performance in estimating clearance times, K 
represented the true capability of the model.      
 
When ordinal scaled categories such as this study were used, Cohen’s weighted kappa was more 
appropriate, since the misclassification between Minor and Intermediate was less severe than the 
misclassification between Minor and Major. The weighted kappa (Kw) assigned penalties 
(weights) to off-diagonal cells and was computed in the following way (Cohen, 1968):  
 

𝐾𝐾𝑤𝑤 = 𝑃𝑃𝑜𝑜(𝑤𝑤)−𝑃𝑃𝑒𝑒(𝑤𝑤)

1−𝑃𝑃𝑒𝑒(𝑤𝑤)
= 1 −

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜,𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑒𝑒,𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖
  (Eq. 4-3) 

 
where wij, po,ij, and pe,ij represent the weight for cell (i, j), the observed proportion in cell (i, j), 
and the expected proportion in cell (i, j), respectively. Cohen originally introduced two types of 
weights – linear and quadratic (Cohen, 1968). Linear weights are proportional to the number of 
categories apart (=|𝑖𝑖 − 𝑗𝑗|), while quadratic weights are proportional to the square of the number 
of categories apart (=|𝑖𝑖 − 𝑗𝑗|2).    
 
In this study, if one randomly selects the clearance time without any knowledge, then the 
probability that the guess is correct is 0.2. Only with the information of the clearance time 
distribution, the probability of the correct estimation/prediction would be 0.65, since the first 
category, Minor, would be always selected due to its highest probability. This value was very 
close to the accuracy of the proposed system. For both cases, however, K and Kw (with linear 
weights) were zero because their agreements were due to a random nature, whereas K and Kw for 
the developed system were approximately 0.4 and 0.5, respectively. These values were 
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interpreted as fair or moderate according to the most widely used index (Table 4.13). The best 
way to evaluate the true capability of the proposed system was compared with those of other 
comparable models and are discussed in the next subsection.  
 

TABLE 4.13 Strength of Agreement (Landis and Koch, 1977; Altman, 1991) 
Kappa value Strength of agreement 

<0.2 Poor 
0.21-0.40 Fair 
0.41-0.60 Moderate 
0.61-0.80 Good 
0.81-1.00 Very good 

 
 
Cohen’s weighted kappa motivates another measure of performance that was more practical. 
This was because the implementation of traffic/incident management based on overestimated 
clearance times would be acceptable in view of the operational needs, even though some 
resources may not be best used. On the other hand, underestimated clearance times would cause 
serious delays on the relevant network. Hence, the cases in the cells below the main diagonal in 
Tables 4.11 and 4.12 were acceptable to traffic operators. To provide only partial credits to these 
slightly overestimated results, the following weights (wij) were assigned to cells (i, j):  
 

𝑤𝑤𝑖𝑖𝑖𝑖 = 1 − |𝑖𝑖−𝑗𝑗|
(𝑛𝑛−1)

  (Eq. 4-4) 

 
where n is the number of categories and 1≤  i, j ≤ n. The assigned weights are presented in Table 
5.14. Note that the weights for the cells above the main diagonal were zero, since their 
misclassification was not acceptable.  
 

TABLE 4.14 Assigned Weights to Compute the New Measure of Performance 

Clearance Duration (minutes) Observation 
≤ 30 30 - 60 60 - 90 90 – 120 > 120 

Estimation/ 
Prediction 

≤ 30 1 0 0 0 0 
30 – 60 0.75 1 0 0 0 
60 – 90 0.5 0.75 1 0 0 
90 – 120 0.25 0.5 0.75 1 0 

> 120 0 0.25 0.5 0.75 1 
 
The new measure of performance, defined as acceptability, is defined below, and the results are 
summarized in Table 4.15:  
 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖∗𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖

∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖
 (Eq. 4-1) 
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where cij represents the number of cases in a cell (i, j). According to this criterion the proposed 
system demonstrated that approximately 80 percent of the given incidents can be categorized in 
the acceptable range. 
 
 

TABLE 4.15 Performance Result (Acceptability) of the Proposed Integrated System 

Incident Class 
Clearance 
Duration 
(minutes) 

Class ratio 
Acceptability 

Train Test 

Minor ≤ 30 65.0% 92.0% 
(2365/2570) 

93.0% 
(1209/1300) 

Intermediate-sub1 30 – 60 20.0% 58.0% 
(458/790) 

62.2% 
(240/386) 

Intermediate-sub2 60 – 90 6.6% 45.0% 
(118/262) 

40.7% 
(55/135) 

Intermediate-sub3 90 – 120 2.4% 54.8% 
(51/93) 

33.3% 
(15/45) 

Major > 120 6.1% 57.5% 
(138/240) 

57.7% 
(60/104) 

Total 100.0% 79.1% 
(3130/3955) 

80.2% 
(1579/1970) 

 

Comparative Evaluation of the Proposed System 

For performance evaluation, this model was compared with the other most widely applied 
methodologies, which include: 
 

• Support vector machine (SVM) (Vapnik, 1998; Cortes and Vapnik, 1995), random 
forests (RF) (Breiman, 2001), and multiple linear regression (MLR) (Greene, 2003) 

 
Since the clearance time was a continuous variable, this study calibrated a typical continuous 
model for comparison. To compare its performance with the proposed system, the clearance time 
was discretized into five bins, based on the same discretization scheme as used in this study. 
Tables 4.16 and 4.17 summarize the performance of each model in estimation and prediction, 
respectively.  
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TABLE 4.16 Performance Results of the Comparable Models based on the Model 
Development Data Set (Regression Type Models) 

Methodology Measure of 
Performance 

Clearance Duration (minutes) 
≤ 30 30 – 60 60 – 90 90 – 120 > 120 Total 

SVM-1 

# of cases 
correctly 
estimated 

2262 279 11 0 0 2552 

accuracy 88.0% 35.3% 4.2% 0.0% 0.0% 64.5% 
kappa NA 0.25 

w-kappa NA 0.29 
acceptability 96.9% 37.2% 4.2% 0.0% 0.0% 70.7% 

SVM-2 

# of cases 
correctly 
estimated 

2350 485 89 23 100 3047 

accuracy 91.4% 61.4% 34.0% 24.7% 41.7% 77.0% 
kappa NA 0.55 

w-kappa NA 0.65 
acceptability 97.6% 64.1% 35.9% 26.9% 41.7% 81.7% 

SVM-3 

# of cases 
correctly 
estimated 

2565 774 258 91 240 3928 

accuracy 99.8% 98.0% 98.5% 97.8% 100.0% 99.3% 
kappa NA 0.99 

w-kappa NA 0.99 
acceptability 100.0% 98.1% 98.5% 97.8% 100.0% 99.4% 

RF 

# of cases 
correctly 
estimated 

2091 476 49 17 144 2777 

accuracy 81.4% 60.3% 18.7% 18.3% 60.0% 70.2% 
kappa NA 0.46 

w-kappa NA 0.63 
acceptability 94.9% 66.3% 24.0% 26.9% 60.0% 80.8% 

MLR 

# of cases 
correctly 
estimated 

2319 219 14 4 56 2612 

accuracy 90.2% 27.7% 5.3% 4.3% 23.3% 66.0% 
kappa NA 0.27 

w-kappa NA 0.39 
acceptability 97.2% 31.3% 7.6% 9.7% 23.3% 71.6% 

Proposed 
System 

# of cases 
correctly 
estimated 

2063 301 94 43 138 2639 

accuracy 80.3% 38.1% 35.9% 46.2% 57.5% 66.7% 
kappa NA 0.41 

w-kappa NA 0.50 
acceptability 92.0% 58.0% 45.0% 54.8% 57.5% 79.1% 
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TABLE 4.17 Performance Results of the Comparable Models based on the Model 
Validation Data Set (Regression Type Models) 

Methodology Measure of 
Performance 

Clearance Duration (minutes) 
≤ 30 30 – 60 60 – 90 90 – 120 > 120 Total 

SVM-1 

# of cases 
correctly 
predicted 

1122 136 11 0 0 1269 

accuracy 86.3% 35.2% 8.1% 0.0% 0.0% 64.4% 
kappa NA 0.23 

w-kappa NA 0.28 
acceptability 96.5% 36.5% 8.1% 0.0% 0.0% 71.4% 

SVM-2 

# of cases 
correctly 
predicted 

1054 144 19 4 30 1251 

accuracy 81.1% 37.3% 14.1% 8.9% 28.8% 63.5% 
kappa NA 0.27 

w-kappa NA 0.41 
acceptability 94.5% 44.3% 18.5% 13.3% 28.8% 74.1% 

SVM-3 

# of cases 
correctly 
predicted 

873 149 23 6 37 1088 

accuracy 67.2% 38.6% 17.0% 13.3% 35.6% 55.2% 
kappa NA 0.21 

w-kappa NA 0.36 
acceptability 89.0% 50.3% 24.4% 24.4% 35.6% 72.7% 

RF 

# of cases 
correctly 
predicted 

934 180 11 5 32 1162 

accuracy 71.8% 46.6% 8.1% 11.1% 30.8% 59.0% 
kappa NA 0.25 

w-kappa NA 0.39 
acceptability 91.7% 53.6% 17.0% 15.6% 30.8% 74.2% 

MLR 

# of cases 
correctly 
predicted 

1159 107 10 1 27 1304 

accuracy 89.2% 27.7% 7.4% 2.2% 26.0% 66.2% 
kappa NA 0.25 

w-kappa NA 0.37 
acceptability 97.0% 30.1% 11.1% 6.7% 26.0% 72.2% 

Proposed 
System 

# of cases 
correctly 
predicted 

1068 146 33 9 60 1316 

accuracy 82.2% 37.8% 24.4% 20.0% 57.7% 66.8% 
kappa NA 0.40 

w-kappa NA 0.51 
acceptability 93.0% 62.2% 40.7% 33.3% 57.7% 80.2% 



62 
 

Since support vector machines were defined based on selective values of several parameters in 
wide ranges, various combinations were tested, and the best three calibrated support vector 
machines were selected, so-called SVM-1, SVM-2, and SVM-3. SVM-1 was the calibrated result 
by not applying weights to balance sample sizes for each clearance time class, whereas different 
combinations of weights were used to calibrate SVM-2 and SVM-3.   
 
SVM-1 showed its overall performance was like the proposed model in accuracy and 
acceptability. However, the model can well estimate/predict the major class (≤ 30 minutes) as 
evidenced by the low values for kappa and weighted kappa.  SVM-2 had better capability to 
estimate those in the classes of Intermediate and Major clearance time than SVM-1, while SVM-
3 exhibited the best overall performance in most clearance time classes, even though its overall 
prediction ability was not as reliable as the proposed system due to the over-fitness. 
 
The random forests were also defined based on several parameters such as the number of trees 
and the number of predictors randomly selected to determine the best splitter. The best RF was 
selected after numerous experiments and it demonstrated good performance to estimate/predict 
those incidents with clearance times less than one hour, although it did not show the desirable 
performance for the remaining cases.  
  
In addition to SVM and RF, this study has also calibrated a multiple linear regression model 
based on the following procedure: 
 

1. Transform the dependent variable (clearance times) to the normal distribution − 
According to Figure 4.2, it is obvious that clearance times were not normally distributed. 
Since the linear regression model assumes that the dependent variable has a normal 
distribution (determined by the distribution of error term (ui)) (Koutsoyiannis, 1972; 
Greene, 2003), the box-cox transformation test was conducted to find the best lambda (λ) 
to transform to the normal distribution (Box and Cox, 1964). The estimated λ is -0.0393, 
which is close to zero; thus, the natural logarithm form of the original variable was 
adopted (Box and Cox, 1964). Figure 4.12 presents the distribution of the transformed 
clearance times.   
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FIGURE 4.12 Distribution of the Transformed Clearance Times 

 
2. Add a variable at a time and observe if it is statistically significant − If it is not 

significant at the 95 percent confidence level, then it is removed from the model. At this 
level, various functional forms for those independent variables were also considered, but 
most of those were not significant.   

3. Test multicollinearity between independent variables in the final model using variance 
inflation factors (VIF) (Fox and Monette, 1992) − VIF values for all predictors showed 
smaller than 10, indicating that no significant multicollinearity existed in the selected 
model. 

4. Evaluate the model homoscedasticity using Breusch-Pagan test (Breusch and Pagan, 
1979) − Chi-square value, based on the selected model, was 2.006; thus, it did not reject 
the null hypothesis that the residuals were homoscedastic. Figure 4.13 also confirmed that 
no significant heteroscedasticity was presented in the model. 

  

log(clearance times) 
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The linear regression model is widely used in the transportation field because of its advantage 
over other “black-box” type models − the interpretability of the model. The developed MLR 
summarized in Table 4.18 shows each variable’s impact on the clearance time. Notice that the 
dependent variable is the natural log of clearance times (minutes). The number of tractor-trailer 
incidents (noTT) showed the highest significance, reflecting that the clearance time increased 
with the involvement of tractor-trailers. Similarly, other types of heavy vehicles (i.e., single unit 
trucks (noSUT), pickup trucks, vans, and SUVs (noPVS)) also contributed significantly to 
increasing the clearance times. Obviously, the incident type was an important factor to determine 
the clearance times. The indicator for fatality involved (CF) was the second most significant 
variable, according to MLR.  
 
 

 
FIGURE 4.13 Distribution of Residuals versus Fitted Response Values 
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TABLE 4.18 (a) The Developed Multiple Linear Regression Model 
Log(ClearanceTime (minutes)) = 2.77 – 0.47*TOC4 –  0.22*TOC3or7 – 0.48*AOC_S  
                                                     (30.40)  (-9.77)              (-4.09)                  (-6.97)               
      
–  0.20*noVeh + 0.12*noPVS + 0.37*noSUT +0.47*noTT + 1.72*CF + 0.82*CPI + 
0.47*CPD 
  (-5.54)              (4.04)               (8.45)              (13.48)           (11.74)       (9.54)         (5.55)           
 
– 0.36*Disabled + 0.38*Fire + 0.69*PolAct + 0.10*SIorWet – 0.28* noSDsh3 + 
0.49*SDBmain 
  (-4.25)                (3.23)           (3.10)              (2.46)                (-1.97)                   (9.31) 
 
+ 0.33*ODBmain + 0.59*Southern – 0.42*Washington + 0.27* LocalPol + 0.14* StatePol 
   (3.55)                   (3.41)                  (-7.23)                      (2.95)                   (4.05)                       
 
+ 0.37*MCTMC - 0.40*I895 – 0.10*I95 + 0.12*OtherRd  
 (-4.81)                 (-2.06)          (2.82)         (2.49) 
 
F-statistic= 90.52            Adjusted R-squared= 0.36 
(Numbers in parentheses are t-statistic values) 
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TABLE 4.18 (b) Descriptions of Variables Included in MLR 
Variable Description 

TOC4 1 if the responsible operation center is TOC 4; otherwise 0 
TOC3or7 1 if the responsible operation center is TOC 3 or TOC 7; otherwise 0 

AOC_S 1 if the responsible operation center is AOC South; otherwise 0 

noVeh Number of total vehicles involved with the incident 
noPVS Number of pickup trucks, vans, or SUVs involved with the incident 
noSUT Number of single unit trucks involved with the incident 
noTT Number of tractor-trailers involved with the incident 
CF 1 if the incident is involved with any fatality; otherwise 0  
CPI 1 if the incident is involved with any personal injuries; otherwise 0 
CPD 1 if the incident is involved with any property damage; otherwise 0 

Disabled 1 if the nature of incident is disabled vehicle; otherwise 0 
Fire 1 if the nature of incident is vehicle on fire; otherwise 0 

PolAct 1 if the incident is involved with police activity; otherwise 0 
SIorWet 1 if the pavement condition is snow/ice or wet; otherwise 0 

noSDsh3 1 if at least 3 shoulder lanes exist on the same direction of where the 
incident occurred; otherwise 0 

SDBmain The ratio of number of closed lanes to the total number of lanes on the 
same direction of where the incident occurred 

ODBmain The ratio of number of closed lanes to the total number of lanes on the 
opposite direction of where the incident occurred  

Southern 1 if the incident occurred in Southern MD; otherwise 0 
Washington 1 if the incident occurred in Washington D.C. area; otherwise 0 

LocalPol 1 if the incident is detected by local polices; otherwise 0 
StatePol 1 if the incident is detected by state polices; otherwise 0 

MCTMC 1 if the incident is detected by Traffic Management Center in Montgomery 
County; otherwise 0 

I895 1 if the incident occurred on I-895; otherwise 0 
I95 1 if the incident occurred on I-95; otherwise 0 

OtherRd 1 if the incident occurred on minor roads in suburban or rural areas; 
otherwise 0 
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Also, other incident types from minor (disabled vehicles and fire) to major (personal injuries, 
property damage, and police activities) showed statistical significance to the incident clearance 
time. Note that the sign for the variable Disabled is negative, which indicated that the clearance 
time of the incident primarily due to disabled vehicles would be relatively shorter than those of 
other types of incidents.  
 
MLR, interestingly, included variables related to regions (Southern and Washington). This 
implied that it would take longer time to clear incidents occurring in Southern Maryland, but 
exhibited a shorter time in the Washington metropolitan area. Similarly, the clearance times of 
incidents would be shorter if they occurred on I-895 or I-95, but longer on minor roads in 
suburban or rural areas. Moreover, several detection sources were included in the model. They 
implied that incidents detected by those sources (local/state polices or MCTMC) are likely to 
have longer clearance times than those detected by other sources. These statistical observations 
with other factors included in MLR were consistent with some of the findings from SCAR. 
However, MLR was limited to catch interrelationships between factors since most variables were 
binary, while association rules used to compose SCAR can capture various relationships between 
factors.  
 
Based on the relatively low value of adjusted R2, MLR did not show a good performance. 
However, using the same measures of performance, MLR demonstrated results comparable with 
other models. The overall model accuracy was very close to the one from the proposed system 
owing to the high accuracy on clearance times less than 30 minutes, but the MLR was not 
reliable to estimate/predict clearance times between 1 hour and 2 hours. The acceptability of 
MLR was significantly lower than that of the proposed systems. This indicated that MLR has a 
strong tendency to concentrate on the dominated domain of the study data set (short clearance 
times).  
 
To sum up, the proposed system outperforms other models in various aspects. First, its accuracy 
and acceptability for both the overall level and the individual class level were better than other 
models. In addition, the proposed model provided some insightful information on the impacts of 
related factors and their collective impacts on incident clearance times. Research findings listed 
in subsection 4.3.2 would be useful for traffic agencies to plan and improve their incident 
management programs. 
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Chapter 5: An Integrated Multi-criteria Support System for Assessing 
Detour Decisions during Non-Recurrent Freeway Congestion 
 

5.1 Introduction 

As discussed in Chapter 1, traffic incidents have long been recognized as the main contributor to 
congestion in highway networks. Thus, contending with non-recurrent congestion has been a 
priority task for most highway agencies over the past decades. Under most incident scenarios, if 
proper diversion plans can be implemented in time, motorists can circumvent the congested 
segments and best use the available corridor capacity. To tackle this vital operational issue, 
transportation professionals have proposed a variety of advanced diversion control and route 
guidance strategies (Papageorgiou, 1990; Messmer and Papageorgiou, 1995; Morin, 1995; Pavlis 
and Papageorgiou, 1999; Wu and Chang, 1999; Liu et al., 2011) to optimally balance the 
volumes between the freeway and the arterial. Certainly, those strategies could improve the 
efficiency of incident management in freeway corridors, if properly implemented.  
 
Nevertheless, before implementing any detour strategy, traffic operators must justify its necessity 
based on various factors, since such operations usually demand a substantial amount of resources 
and personnel efforts. In this regard, very limited information is available in the literature to 
assist decision makers in assessing the benefits and costs of implementing detour operations, 
although numerous traffic safety and operations manuals (e.g., Delaware DOT, 2011; State 
Police NJ, 2010; University of Kentucky, 2009; FHWA, 2009; Wisconsin DOT, 2008) have 
addressed the need for properly diverting traffic flows during major incidents or emergencies.  
 
One source offering such guidelines is Alternate Route Handbook (2006), which provides 
comprehensive and general guidelines on how to plan and execute the detour operations 
involving various stakeholder agencies. According to this document, the key factors to consider 
include the incident duration, the number of lanes blocked, the observed traffic condition, the 
time of day, and the day of the week. The capacity of the proposed alternative route and its 
background traffic are also critical factors. 
 
Table 5.1 summarizes the criteria used in several states to decide whether to execute the pre-
developed alternate route plan. Notice that the District IV of Florida DOT will typically activate 
its detour plan when two or more lanes are closed for at least two hours. On the other hand, most 
states require an incident duration longer than thirty minutes or a complete closure of the 
roadway to implement detour plans. The Manual on Uniform Traffic Control Devices (MUTCD) 
(2009) states that major and intermediate incidents lasting more than thirty minutes usually 
require traffic diversion or detouring for road users, due to partial or full roadway closures, while 
traffic diversion may not be necessary for minor incidents usually cleared within thirty minutes. 
A comprehensive review of this subject clearly shows that a reliable tool for traffic control 
operators to decide when and how to implement detour operations has yet to be developed. 
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TABLE 5.1 Criteria for Deciding the Implementation of Detour Plans in Various States 
Agency Criteria 

North Carolina DOT 
– main office 

• Complete closure of the highway in either direction is anticipated for 
fifteen minutes or longer. 

North Carolina DOT 
– Charlotte regional 

office 

• No action or discussion occurs until fifteen minutes after the incident. After 
fifteen minutes, an alternate route plan is deployed only if the highway is 
completely closed (all lanes closed, including the shoulder) and closure is 
expected to last at least an additional fifteen minutes (thirty minutes’ total). 

New Jersey DOT 

• Level 1: Lane closures on a state highway that are expected to have a 
prolonged duration and impact on traffic. 

• Level 2: Complete closure of a highway that is anticipated to last more than 
ninety minutes. 

Oregon DOT 
• Incident with two or more lanes blocked, or 
• Incident with one lane blocked and expected to last more than twenty 

minutes. 
New York State 
DOT Region 1 

• Implemented only when the highway is completely closed. 
• Will not be implemented if at least one lane (or even the shoulder) is open. 

Florida DOT 
District IV • Two or more lanes blocked for at least two hours. 

ARTIMIS 
(Ohio/Kentucky) 

• This plan has a detailed table with four different levels, based on some 
present criteria, such as: 
- During the morning and afternoon peak hours, an advisory alternate route 

is deployed in the event of a two-lane closure for more than two hours or 
a closure of more than two lanes for less than thirty minutes. 

- Mandatory alternate routes are deployed during the peak hours when 
more than two lanes are closed for at least thirty minutes. 

Ada County, Idaho 

• This plan specifies different levels of severity, including: 
- Levels C and D require implementation of a diversion route. 
- Level C is an incident taking thirty to 120 minutes from detection to full 

recovery of the traffic flow. 
- Level D is an incident taking over two hours from its detection to full 

recovery (including full freeway closure in one or both directions). 
Wisconsin DOT 

(Blue Route) • Incident causes delays that will exceed thirty minutes. 

Source: Alternate Route Handbook (2006) 
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In view of the strengths and limitations in the existing studies, this study was proposed to assist 
responsible agencies to mitigate incident impacts on freeways with the following tasks: 
 

1. Provide reliable guidelines and tools to help responsible agencies design, evaluate, and 
operate traffic management plan under non-recurrent congestion. 

 
2. Deliver an integrated system that can assess the necessity of traffic detour/diversion 

based on a comprehensive review of associated factors. Such a system can be used as a 
prototype and/or applied in real-time traffic operations. 
 

The rest of this chapter presents the proposed decision-support system, the key logic and models 
embedded in each component of the system. Also, the evaluation and application of the 
developed system are presented with scenario-based analysis and sensitivity evaluation in the last 
section. 

 

5.2 Development of the Detour Decision Support System 

This section presents the proposed system, including the core design concept, principal system 
components, and key models embedded in each component. 

5.2.1 The Proposed System based on Analytical Hierarchy Process (AHP) 

During the incident management process, multiple factors may affect the final decision of 
responsible traffic managers on whether to implement detour operations, such as the expected 
benefits and costs, impacts on traffic safety, reliability of travel, and the accessibility and 
acceptability of detour routes. Detour operations that fail to consider those critical factors may 
result in a waste of traffic management resources and the exacerbation of traffic congestion in 
the target corridor.  
 
The traditional decision-making model, when it adopts multiple criteria, usually evaluates these 
factors individually in a specific directional flow. Since each criterion is evaluated independently 
and one at a time, the importance (weight) of every criterion is identical. However, in many 
decision-making processes, including the detour decision process, each individual criterion may 
influence the final decision to a different degree, thus necessitating the prioritization of these 
criteria. 
 
One well-known decision-making process that considers the relative importance of criteria is the 
AHP developed by Saaty in the early 1970s (Saaty, 1980). The AHP provides a structured 
system for organizing and analyzing a complex decision problem by decomposing it into a 
hierarchy of more easily understandable subproblems (i.e., decision criteria and alternatives). 
The various elements in the constructed hierarchy are systemically evaluated by comparing them 
two at a time to observe how they affect an element at a higher level of the structure. In these 
pairwise comparisons, decision makers can use either tangible data or their judgments to 
determine the relative importance of those elements. The AHP converts these evaluations into 
numerical values that serve as the basis for the final stage — computing the numerical priorities 
of all decision alternatives to reflect their relative abilities to accomplish the decision goal.  
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The main advantage of the AHP is that it allows the comparison of both qualitative and 
quantitative criteria using informed judgments to derive their weights and priorities. Also, the 
AHP can assist decision makers in discovering the decision that best suit their goal and their 
understanding of the problem. Further discussions of the AHP are available in the references 
(Saaty, 1980; Saaty, 1982; Haas and Meixner, 2010; Teknomo, 2006). 
 
Considering the nature of the proposed detour decision problem and the capabilities of the AHP, 
this study developed a hybrid decision support system by integrating the traditional decision-
making model with the AHP model, as shown in Figure 5.1. Details for the system structure and 
supporting technical models are presented in the following subsections. 

5.2.2 Architecture of the Proposed System 

The developed system executes the decision on whether to activate the detour operations, based 
on the resulting costs and benefits. To reach any conclusion, one would build a procedure to 
systematically evaluate potential outcomes, which may either positively or negatively affect 
drivers, traffic networks, or environments. A level-by-level description of the overall system 
structure is presented below, along with its graphical illustration in Figure 5.1: 
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FIGURE 5.1 Overall Structure of the Proposed Detour Decision Support System 

Level 1: The decision goal setup 
The decision goal, the first level of the hierarchical system for decision makers to establish, 
is to determine if the proposed detour operation should be implemented with sufficient 
benefits to justify the operational costs. 

Level 2: Model inputs by users 
As discussed previously, this level and the following lower level are developed with the 
standard algorithm flowchart. The model variables entered at this level are used to estimate 
and evaluate quantitative criteria at the lower levels. At this level, users need to input the key 
variables listed below: 

- Incident information: incident duration, lanes blocked, and incident location. 
- Network information: number of lanes on primary (freeway) and detour routes, the 

number of signals on the detour route, and the distance of the detour path.  
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- Traffic information: traffic volume on primary and detour routes, heavy vehicle 
volume, and speed limit for the detour route. 

- Operations information: anticipated compliance rate if detour operations are 
implemented. 

Level 3: Initial assessment for deploying the detour operations 
The conditional criterion at this level is to judge the need for the detour operation under the 
available information, given the objective of minimizing the total delay in the entire network. 
If the estimated optimal detour rate turns out to be near zero, then traffic operators can 
conclude that the candidate detour plan would not contribute to relieving the incident-
induced congestion and they should consider other detour plans or strategies, if available. A 
positive estimate for the optimal detour rate should cause the responsible operators to 
consider additional vital factors before reaching the conclusion.  
 
As shown in Figure 5.1, if the answer to the question in Step 3 is “No,” the traffic operators 
would terminate the decision process with “no detour”; otherwise, they would continue the 
process by using additional criteria to reach the definitive conclusion.  

Level 4: Development of additional decision criteria and their relative importance  
             for the AHP 

If the decision from the initial assessment in Step 3 is “detour,” the decision system will 
apply the AHP to evaluate the comprehensive impacts of other criteria before making the 
final decision. The standard hierarchy of the AHP model consists of three levels, with the 
goal at the top, alternatives at the bottom, and criteria in between. Additional levels of the 
hierarchy can be added if developers want to break down the criteria into sub-criteria, sub-
sub-criteria, and so forth.  
 
Unlike the simple criteria used in the literature (i.e., the incident duration and the number of 
lanes blocked), the proposed system employs the following criteria to effectively evaluate the 
overall benefits of the target decision: 

• Benefits/costs 
- Benefits: total travel time (minutes/vehicle), fuel consumption, and emissions 

saved from detour operations; 

- Costs: operational and maintenance costs to implement detour plans 
(converted into monetary values to facilitate comparison). 

• Safety and reliability 
Reducing traffic demand on the primary route by the diversion of traffic would 
alleviate the congestion caused by the primary incident and consequently reduce 
secondary incidents. Note that, to quantify such results, one can estimate one of 
the following MOEs (measures of effectiveness): 1) reduction in secondary 
incidents; 2) reduction in the probability of having secondary incidents; or 3) 
reduction in the congestion area (queue length) due to the detour operations. This 
study uses the maximum queue length on the freeway. 

• Accessibility 
Some factors — such as longer travel times, distances, delays at traffic signals or 
stop signs, and lower speed limits on the detour route — may degrade the 
accessibility of the detour route to travelers. To capture this nature, this study 
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measured the estimated travel times for the primary and alternative routes and 
used such information as the accessibility criteria. 

• Acceptability 
The acceptability of a detour plan significantly affects its performance. However, 
a plan’s acceptability depends on the characteristics of drivers (e.g., risk takers, 
conservative or patient drivers, etc.) and the quality as well as the availability of 
real-time traffic information. Moreover, drivers might not prefer the selected 
detour route due to the existence of signalized intersections, stop signs, turning 
movements and queues. Thus, drivers may downgrade the acceptability of the 
detour plan. Considering the scenarios, this study used drivers’ anticipated 
compliance rate as the criterion for measuring this factor. 
 

Usually, informed judgments by decision makers are used to derive the relative importance 
of the criteria. They can come from concrete measurements or experts’ judgments. A core 
idea of the AHP methodology is to involve human judgment in the evaluation process. 
Informed judgments, such as “Criterion A is two times as important as Criterion B” and 
“Criterion B is three times as important as Criterion C” are expressed in numerical scales of 
measurement using a series of pairwise comparisons. The final product from these 
procedures is a priority ranking of criteria against the goal. Details of the procedures for 
standard pairwise comparisons, normalization, and determination of final ranking of 
priorities are available in the literature (Saaty, 1980; Saaty, 1982; Haas and Meixner, 2010; 
Teknomo, 2006). 
 

Level 5: Determination of the relative ranking of alternatives under each criterion. 
The next task of the AHP development is to determine the relative ranking of alternatives 
with respect to each criterion. Using a similar method to obtain the relative importance of all 
criteria, one can derive the preference of each alternative over one another with respect to 
each criterion.  

Level 6: Determination of the overall relative ranking of alternatives concerning the decision 
goal. 

Given the weights for criteria and alternatives from Step 4 and Step 5, the decision makers 
will be able to estimate the priorities of alternatives against the goal.   

 

5.2.3 Supplemental Models to Support the Proposed System 

Completing the system requires several supplemental models to estimate the measurements for 
some quantitative criteria. This subsection presents details for each supplemental model. 

 
Integrated Control Model for Freeway Corridors under Non-Recurrent Congestion 

The developed system conducts an initial assessment to determine the necessity of the detour 
operation with the input data at Level 3, as described in the previous subsection 5.2.2. Since the 
decision is made based on the estimated optimal detour rate, models or tools are needed to 
produce such measurements. In this case, this study used an integrated control model for freeway 
corridors under non-recurrent congestion developed by Liu and Chang (2011). This model 
produced the optimal diversion rates from the freeway mainline to mitigate congestion at the 
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incident segment while concurrently adjusting signal timings along the arterial intersections to 
best accommodate the detour traffic. The model has two distinct features: 

- Explicitly modeling the evolution of detour traffic along the ramps and surface streets 
with a set of dynamic network flow formulations to prevent local bottlenecks caused by 
demand surge from diversion operations and to properly set responsive signal timing 
plans; and 

- Providing a multi-objective optimization model to maximize the use of the available 
corridor capacity via detour operations without causing excessive congestion on the 
arterials and ramps.    

Its multi-objective functions can further be stated as: 

- Maximizing the total throughput of the freeway corridor during incident management by 
using a parallel arterial as the detour route; and 

- Minimizing drivers’ total times on the detour route to ensure their compliance with the 
routing guidance. 
 

This integrated control model also simulated an identified incident and traffic scenario on the 
given network and output the optimized detour rate as well as total travel times over the network. 
For each decision scenario, this model provided the results for operations with and without the 
detour. While the third level used the optimal detour rate for the initial decision making, the 
derived delay reduced by detour operations served as the basis for estimating the user benefits 
for the benefit-cost ratio criterion at the following level. 

 
Benefit Estimation Procedure 

The primary goal of implementing a detour plan is to ease the congestion and reduce the 
resulting delay due to incident-caused lane closures. However, operating detour plans will incur 
significant costs. Thus, responsible traffic managers need to assess whether the resulting benefits 
can compensate for the operational costs. The developed system conducted this benefit-cost 
analysis at Level 4 along with other analyses for the more rigorous and comprehensive review. 
The benefits contributed by the detour operations were estimated in an economic way by 
following the steps presented below:  

Step 1: Compute the difference in travel times between the two scenarios — i.e., operations with 
and without the detour. 

This study used the total travel time over the network from the output of the integrated 
corridor control model to compute the reduced delay due to detour operations.  

Step 2: Select other impacts which could also be part of the benefit analysis. 
Reducing the delay for any reason may also decrease its associated MOEs. This study 
included reductions in fuel consumption and emissions (i.e., HC, CO, NO, and CO2) in the 
benefit estimation. 

Step 3: Estimate the reduced MOEs using available references   
The amount of fuel consumption reduced directly from a traffic delay was estimated by using 
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the following conversion factors: 0.156 gallons of gasoline/hour for passenger cars (Koerner, 
2008) and 0.85 gallons of diesel/hour for trucks (Lutsey et al., 2004). 

Similarly, reduced emissions were estimated from either the reduced amount of delay or fuel 
consumption, using the following conversion factors: 

- HC: 13.073 grams/hour of delay (Maryland Department of Transportation, 2000) 

- CO: 146.831 grams/hour of delay (Maryland Department of Transportation, 2000) 

- NO: 6.261 grams/hour of delay (Maryland Department of Transportation, 2000) 

- CO2: 19.56 lbs CO2/gallon of gasoline (Energy Information Administration, 2009) 
 22.38 lbs CO2/gallon of diesel (Energy Information Administration, 2009) 

Step 4: Convert the related delay, fuel, and emissions to monetary values 
This step used the monetary conversion factors listed below to estimate the reduced delay 
and associated MOEs:  

- Delay: $28.57/hour for passenger cars (U.S. Census Bureau, 2009) 
 $20.68/hour for truck drivers (U.S. Census Bureau, 2009) 
 $45.40/hour for cargo drivers (De Jong, 2000; Levinson and Smalkoski, 2003) 

- Fuel: $2.83/gallon for gasoline (Energy Information Administration, 2010) 
 $2.99/gallon for diesel (Energy Information Administration, 2010) 

- HC: $6,700/ton (DeCorla-Souza et al., 1998) 

- CO: $6,360/ton (DeCorla-Souza et al., 1998) 

- NO: $12,875/ton (DeCorla-Souza et al., 1998) 

- CO2: $23/metric ton (CBO, 2007)  
 

Given the estimated operational costs, one can approximate the benefit-cost ratio with the above 
steps to use as the criterion at the fourth level of the system. 

Maximum Queue Length Estimation 

Another key factor that traffic managers should consider when making their decision is the 
extent to which the congestion mitigation strategy would improve safety and reliability for 
motorists. To estimate this benefit, the best MOE would be the reduction in secondary incidents. 
Unfortunately, a rigorous methodology and data availability remains a research issue (Chou and 
Miller-Hooks, 2010; Zhan et al., 2009). Meanwhile, this study used the maximum queue length 
as a proxy variable, because the frequency of secondary incidents correlates highly to the queue 
length caused by the primary incident (Chou and Miller-Hooks, 2010; Zhan et al., 2009).  
 
The maximum queue estimate model, the tool used here to evaluate the safety and reliability of a 
candidate detour plan, was developed based on simulation experiments with CORSIM (Kim et 
al., 2009). The entire network used for these experiments was a four-lane loop format highway 
similar to I-495 (Capital Beltway) in the Washington D.C. metropolitan area. The simulation did 
not consider lane drops, grades, and any other local bottlenecks to generate a queue solely due to 
incidents. The queue, defined as the length of the maximum spillback consisting of vehicles 
moving under 20 mph, was measured from the congestion caused by one isolated incident. In 
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addition, this model development did not consider the queue in the opposite direction caused by 
the rubbernecking factor. To identify factors contributing to the queue induced by incidents, the 
simulation experiments explored several related variables, such as incident duration, the number 
of blocked lanes, traffic volume, on- and off-ramp volumes, the number of heavy vehicles, 
rubbernecking, and incident location.  
 
Table 5.2 and Figure 5.2 summarize a regression model for estimating the maximum queue 
length, developed by using 285 samples acquired from the CORSIM output. All 14 variables 
included in the proposed queue model show reasonable parameter signs, and they are all 
significant at the 10 percent confidence level. Note that the dependent variable is in a natural 
logarithm form of the maximum queue, implying that the simulated maximum queues 
approximately follow a log-normal distribution.  
 
The estimation results showed that, as expected, the queue length grows with increases in traffic 
volume and incident duration. Lane closures for Lanes 2, 3, and 4 have statistically significant 
impacts on the maximum queue, while rubbernecking effects do not play an important role.  
 
Interestingly, the queue model is proved to be highly sensitive to the locations of incidents. Most 
variables defined to capture the nature of the incident location (see Table 5.2) show significant 
contributions to the model, except for the variable Away_On_1, defined as 1 if an incident 
occurred about one mile away after passing an on-ramp and 0 otherwise. It is also noticeable that 
the variable Away_On_2/3 (defined in Table 5.2) is much less significant than other incident-
location variables. Moreover, variables indicating incident locations before reaching the next on-
ramp (e.g., Away_Off_1/3, Near_Off_Bf, Near_Off_Af, and Btw_On_Off in Table 5.2) show 
greater significances, with higher estimated coefficients. This implies that incidents occurring 
before reaching the next on-ramp are more likely to increase the queue. 
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TABLE 5.2 The Maximum Queue Estimation Model and Descriptions of Variables 
Log(queue(ft)) = 6.6736+ 0.0191*HeavyVeh + 0.0002*Main_Vol + 0.0149*Inc_Dur  

  (51.07)  (3.92)                         (15.79)                      (13.53)  
+ 0.1930*LnB2 + 0.1147*LnB3 + 0.1528*LnB4 + 1.0079*Away_Off_1/3  
   (3.32)                (1.97)                  (2.71)                 (7.63) 
+ 0.8094*Near_Off_Bf + 1.0020*Near_Off_Af + 0.8100*Btw_On_Off   
   (6.82)                             (9.23)                              (6.18) 
+ 0.6371*Near_On_Bf + 0.6284*Near_On_Af + 0.5501*Away_On_1/3  
   (5.51)                             (5.66)                             (5.31)       
+ 0.1604*Away_On_2/3  
   (1.68)                
 

Number of observations used : 285 
R2 = 0.7360,      F-value for Model = 53.76,     P-value for Model = < 0.0001 
Note : Numbers in parentheses are t-statistic values 

Descriptions of Variables 

HeavyVeh Heavy vehicle percentage (%) 

Main_Vol Volume on main lanes (vph) 

Inc_Dur Incident duration in minutes 

LnB2 1 if Lane 2 is blocked due to the incident; 0 otherwise 
(Note: Lane 1 is defined as the right-most lane, i.e., adjacent to the right shoulder) 

LnB3 1 if Lane 3 is blocked due to the incident; 0 otherwise 

LnB4 1 if Lane 4 is blocked due to the incident; 0 otherwise 

Away_Off_1/3 1 if an incident occurred about 1/3 miles before the nearest off-ramp; 0 otherwise 
(Area 1 in Figure 6.2) 

Near_Off_Bf 1 if an incident occurred near (within 500 ft), but before passing, an off-ramp; 0 
otherwise (Area 2 in Figure 6.2) 

Near_Off_Af 1 if an incident occurred near (within 500 ft), but after passing, an off-ramp; 0 
otherwise (Area 2 in Figure 6.2) 

Btw_On_Off 1 if an incident occurred somewhere between an on-ramp and off-ramp; 0 otherwise 
(Area 3 in Figure 6.2) 

Near_On_Bf 1 if an incident occurred near (within 500 ft), but before passing, an on-ramp; 0 
otherwise (Area 4 in Figure 6.2) 

Near_On_Af 1 if an incident occurred near (within 500 ft), but after passing, an on-ramp; 0 
otherwise (Area 4 in Figure 6.2) 

Away_On_1/3 1 if an incident occurred about 1/3 miles after passing an on-ramp; 0 otherwise (Area 
5 in Figure 6.2) 

Away_On_2/3 1 if an incident occurred about 2/3 miles after passing an on-ramp; 0 otherwise (Area 
5 in Figure 6.2) 
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FIGURE 5.2 Illustrations of Incident Locations for the Queue Model 

  
The estimated maximum queue length is used as one of the criteria for the comprehensive 
assessment at Level 4 of the developed system. 
 

5.3 The System Evaluation and Applications 

This section illustrates the system performance to various experimental scenarios and some key 
system parameters. The experimental analysis includes five scenarios for comparing the 
performance of the developed system with state-of-the-practice methods. The sensitivity analysis 
provides a comparison of the system outputs, based on different emphases for criteria.  

5.3.1 Illustration of the System Performance and Evaluation by Comparative Analysis 
 
To illustrate the system’s performance this study selected five experimental scenarios, as shown 
in Table 5.3 (Scenario No. 1 to 5). Simulation results showed that proper detour operations 
decreased the total travel time for all selected scenarios (see the row named “saved travel time” 
in Table 5.3). This analysis further investigated whether the detour operations were still 
beneficial from other perspectives and with different MOEs. Table 5.4 presents the system’s 
outputs for those scenarios, and further compared with those by other state DOTs to evaluate the 
merit of the proposed system (see Table 5.5). For these experimental analyses the weights for 
benefit-cost ratio, safety and reliability, accessibility, and acceptability were set at 0.31, 0.31, 
0.18, and 0.20, respectively. 
 
 
 
 
 
 
 
 

Area 1 
Area 2 Area 3 

Area 4 

Area 5 

about 1.5 miles 
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TABLE 5.3 Descriptions of Scenarios 
Scenario No. 1 2 3 4 5 6 

Scenarios for 
Incident And 

Traffic 
Conditions 

# of freeway lanes 4 3 2 3 3 3 

# of lanes in the detour route 1 1 1 1 2 1 
freeway volume (vplph) 250 250 250 750 750 250 

local volume 1 (vplph)* 400 200 200 800 800 800 

local volume 2 (vplph)* 600 300 300 200 200 200 

local volume 3 (vplph)* 600 600 300 300 200 300 

# of signals on detour 2 7 5 2 5 3 

compliance rate 0.9 0.6 0.5 0.5 0.6 0.5 

incident location near 
off-ramp 

middle of 
segment 

near 
off-ramp 

near 
on-ramp 

near 
on-ramp 

near 
on-ramp 

incident duration (mins) 15 15 75 60 90 15 

# of lane blockage 1 3 1 3 3 3 
speed limit on detour route 

(mph) 40 30 30 50 40 40 

MOEs for 
Criteria 

optimal detour flow 0.76 0.80 0.25 0.85 0.54 0.77 

total travel time (hr) w/ detour 734 746 1,517 3,232 10,163 703 
total travel time (hr) w/o 

detour 855 801 1,527 3,617 10,182 787 

saved travel time (hr) 121 55 10 386 19 84 

B/C w/ detour 6.6 2.98 0.33 14.74 0.60 4.58 

B/C w/o detour 0.15 0.34 3.00 0.07 1.68 0.22 

max queue w/ detour (mile) 0.5 0.36 1.26 1.37 2.24 0.59 

max queue w/o detour (mile) 0.58 0.39 1.28 1.66 2.59 0.63 

travel time (min) via freeway 2.52 2.52 2.52 2.52 2.52 2.52 

travel time (min) via detour 7.52 9.15 11.44 6.55 7.52 7.52 
*  Local volume 1 represents the volume for the road connecting from freeway to detour route. 
 Local volume 2 represents the volume for the parallel detour route. 
 Local volume 3 represents the volume for the road connecting from detour route to freeway. 
 Operational and maintenance costs for the B/C estimates are provided by Maryland State Highway Administration 

(Maryland State Highway Administration, 2009). 
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TABLE 5.4 Final System Outputs for Criteria and Alternatives 
Scenario No. 1 2 3 4 5 6 

B/C 
Detour 0.98 0.9 0.1 0.99 0.26 0.95 

No Detour 0.02 0.1 0.9 0.01 0.74 0.05 

Safety and reliability 
Detour 0.53 0.52 0.5 0.55 0.54 0.51 

No Detour 0.47 0.48 0.5 0.45 0.46 0.49 

Accessibility 
Detour 0.25 0.22 0.18 0.28 0.25 0.25 

No Detour 0.75 0.78 0.82 0.72 0.75 0.75 

Acceptability 
Detour 0.53 0.43 0.38 0.38 0.43 0.38 

No Detour 0.47 0.57 0.62 0.62 0.57 0.62 

Final synthesized 
confidences 

for alternatives 

Detour 0.62 0.56 0.30 0.60 0.38 0.58 

No Detour 0.38 0.44 0.70 0.40 0.62 0.42 
 
 

TABLE 5.5 Comparisons of the Decisions, Using the Criteria by Different Highway 
Agencies and by the Proposed System 

Scenario No. 1 2 3 4 5 

Decision Criteria 
(used by agencies  
in the literature) 

Lane Blockage 
(# of closed 

lane(s)/total # of 
lanes) 

1/4 3/3 1/2 3/3 3/3 

Incident Duration 
(minutes) 15 15 75 60 90 

Decisions by Agency 

NC DOT-main office N Y N Y Y 
NC DOT-Charlotte N N N Y Y 

NJ DOT Not 
clear 

Not 
clear Y Y Y 

Oregon DOT N Y Y Y Y 
NY DOT N Y N Y Y 
FL DOT N N N N N 

ARTIMIS 
(Ohio/Kentucky) N N N Y Y 

Idaho 
(Ada County) 

Not 
clear Y Not 

clear Y Y 

Wisconsin DOT Not 
clear 

Not 
clear 

Not 
clear 

Not 
clear 

Not 
clear 

Decision by Proposed System Y Y N Y N 
   Y and N represent “Detour” and “No Detour”, respectively, for the decision. 
 Not clear represents insufficient clarity in the available decision criteria to make a concrete answer. 
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The key incident characteristics associated with each scenario and the resulting 
recommendations by the proposed decision system are summarized below; the focus of which 
was mainly on the lane blockage status and incident duration, since they were the primary 
decision criteria used in the literature:  

• Scenario 1: The incident causes a partial road closure (one out of four lanes is closed), 
and its duration is relatively short (15 minutes). 

System recommendation: Detour operations were recommended (beneficial), with 62 
percent confidence. 

• Scenario 2: The incident causes a complete road closure on a three-lane highway segment 
for 15 minutes.  

System recommendation: Detour plans were recommended (beneficial), with 56 percent 
confidence. 

• Scenario 3: The estimated incident duration is 75 minutes, and it blocks one lane on a 
two-lane highway segment. 

System recommendation: Detour operations were not recommended (not beneficial), with 
70 percent confidence. 

• Scenario 4: The incident causes a complete road blockage on a three-lane segment, and 
its duration is rather long (60 minutes). 

System recommendation: Detour plans were recommended (beneficial), with 60 percent 
confidence. 

• Scenario 5: The incident causes a complete road blockage on a three-lane segment, and 
its duration is rather long (90 minutes). 

System recommendation: Detour plans are not recommended (not beneficial) with 62 
percent confidence. 

Note that the proposed system recommended that properly detouring traffic in Scenario 1, with 
only partial lane blockage over short incident duration, still yielded a sufficient total benefit if 
considered from the economic, environmental, and societal perspectives. The conclusion, 
however, would be quite different if one employed any of the state-of-the-practice methods 
shown in Table 5.1. The third column in Table 5.5 represents the discrepancy of decisions 
between different traffic agencies in the literature and the proposed system.  
 
Similarly, based on the rules reported in Table 5.1, one may conclude that the incident condition 
in Scenario 3 justified a detour operation (see decisions from New Jersey and Oregon DOTs in 
Table 5.5). However, the proposed decision support system, by applying multiple criteria from 
various perspectives, did not recommend the detour implementation with fairly high confidence 
(70 percent). The system considered that the partial lane blockage and the light traffic demand on 
the freeway (500 vph) would not cause an excessive delay. Moreover, the long alternative route, 
with its several signalized intersections and low speed limit, would result in a longer detour 
travel time. Consequently, such an operation may result in a low compliance rate and a less 
favorable benefit-cost ratio. 
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Scenarios 2 and 5 demonstrated how the decision would change if different decision criteria were 
used. For example, the main offices of the North Carolina DOT and New York State DOT used a 
single factor to decide for detour implementation. Based on their decision criterion, these 
agencies implemented detour operations for both Scenarios 2 and 5, because of the complete 
closure of the primary route. However, the proposed system produced different 
recommendations for those two scenarios, since their incident durations and the traffic conditions 
on the freeway and the alternative route were quite different, which lead to significantly different 
benefit-cost ratios (see Table 5.3). 
 
By the same token, the New Jersey DOT would make identical decisions for Scenarios 4 and 5 
using their criteria, i.e., complete road closure and long incident duration. However, the proposed 
decision support system, by considering additional criteria, made the opposite recommendations 
for those two scenarios. The major contributor to this discrepancy was the number of signalized 
intersections on the alternative route. In Scenario 4, only two signalized intersections lay on the 
main detour route, whereas Scenario 5 had five of them. Signalized intersections on the 
alternative route increased its travel times and delays. Thus, the optimization model was less 
likely to divert traffic to the detour route. Although the estimated optimal detour rate for 
Scenario 5 was about 54 percent, the total benefits from the saved total travel time were not 
sufficient to offset the operational expenses. Therefore, the multi-criteria decision-support 
system recommended no detour operations for Scenario 5, in contrast with the decision by the 
New Jersey DOT as well as most traffic agencies listed in Table 5.5. 

 

5.3.2 The Analysis for the Effect of Weights for the Evaluation Criteria on the Final Results  

This analysis demonstrated how the confidence associated with the recommendation by the 
proposed decision support system varies with the relative weights placed on the set of employed 
evaluation criteria. This study further used Scenario 6 in Table 5.3 as a base case and divided it 
into three sub-scenarios for further analyses. Table 5.6 summarizes all data associated with each 
sub-scenario and the results of sensitivity analysis. Key findings from the analysis are presented 
below: 

1) Scenario 6-A: Viewing economic gain and safety as the two most important criteria 
implied that the decision maker should place higher weights on the benefit-cost ratio and 
on safety and reliability. Consequently, the decision support system yielded the 
following recommendation, even though vehicles taking the detour route may experience 
much longer travel times than via the freeway: “Detour operations are recommended, 
with 58 percent confidence.” 

2) Scenario 6-B: If the decision makers place higher weights on accessibility and 
acceptability factors that may affect compliance rates, the proposed decision support 
system yielded the following recommendation to not implement detour operations, unlike 
the conclusion for Scenario 5-A: “Detour operations are not recommended, with 53 
percent confidence.” 

3) Scenario 6-C: If all factors were equally important, the system then yielded the following 
decision: “Detour operations are recommended, with 53 percent confidence.” 
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TABLE 5.6 Summary of Sensitivity Analysis for Relative Importance of Criteria 
Scenario No. 6-A 6-B 6-C 

Weights for 
evaluation criteria 

B/C 0.31 0.18 0.25 
Safety & Reliability 0.31 0.20 0.25 

Accessibility 0.18 0.31 0.24 
Acceptability 0.20 0.31 0.26 

Final synthesized 
confidences for 

alternatives 

Detour 0.58 0.47 0.53 

No Detour 0.42 0.53 0.47 
*The base scenario for this analysis is Scenario 6 in Table 6.3. 
 
In summary, this analysis sought to highlight the fact that choosing whether to implement a 
detour operation, when detecting an incident, is a complex decision-making process that should 
consider various associated factors, ranging from conventional traffic delay to socioeconomic 
impacts, such as creating a low-emission environment. The simple rules used in most state-of-
practices along with the widely-used MOE (delay reduction) used by practitioners and 
researchers may not be sufficient to yield the decision that best fits the traffic operational needs 
and the socio-environmental concerns.  
 
For this sake, this study presented a comprehensive decision system to rigorously incorporate all 
critical factors in making timely detour decisions to contend with non-recurrent congestion. The 
performance analysis results showed that the proposed system made more reliable decisions, 
based on comprehensive and rigorous review of various factors associated with advantages and 
disadvantages of detour operations, than those practices by state DOTs. Responsible traffic 
agencies, however, ought to place proper priorities on those key decision criteria, based on their 
local constraints such as available resources, mission for a real-time incident response system, 
and/or priority concerns of the general public. 
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Chapter 6: Conclusions and Future Research 

6.1 Conclusions and Contributions 

Traffic incidents have long been recognized as the main contributor to congestion in highway 
networks and the related adverse environmental impacts. The fact that the congestion induced by 
incidents is random in nature necessitates an efficient and effective incident management system, 
including detection, response, clearance, and network-wide traffic management. Extensive field 
evaluations have also confirmed that an efficient incident management indeed can yield 
significant benefits and will be an essential program for any state highway administration. 
 
For this sake, this project proposed a freeway traffic incident management system that can 
enhance the efficiency of existing operations and minimize the impacts to commuters by 
efficiently allocating available response units, reliably estimating incident duration, rigorously 
assessing traffic detour need, and properly implementing control measures. However, to develop 
an effective incident response system, most highway agencies encounter the following critical 
issues: 

• Perform Emergency Responses with Limited Resources: Most incidents require 
emergency response services from EMT staff, wreckers/tow vehicles, police, and so on. 
Since most responsible agencies have only limited resources (e.g., staff and tow trucks), 
especially during the peak periods, an efficient strategy to optimize the response 
allocation is needed to maximize their effectiveness. Hence, this study proposed an 
operational model to optimally allocate the available response units to minimize the total 
incident-induced delay. 

• Need of Models or Algorithms for Reliably Estimating Clearance Times of Detected 
Incidents: Predicting the duration needed for incident clearance is one of the essential 
tasks for estimating the resulting traffic impacts and assessing the operational efficiency. 
In view of the need for such tools, this study developed an integrated system to provide a 
reliable estimate of the clearance duration for a detected incident. With the estimated 
duration for incident clearance, responsible agencies can then implement traffic 
managing strategies in the network within the impacted area and disseminate related 
traffic information to en route and pre-route travelers.   

• Need of Models or Algorithms to Support the Evaluation on the Benefits to Activate 
Detour/diversion Operations: During the clearance time for severe lane-blockage 
incidents, traffic detour/diversion could be one of the most effective ways to reduce the 
network-wide impacts. To ensure the efficiency of detour operations, it is vital to have a 
rigorous process that allows the responsible agencies to consider costs and benefits from 
various perspectives: However, the state of practices on this regard merely rely on mainly 
experience or engineering judgments. Hence, this study developed a decision support tool 
to assist control operators in tackling this essential issue. 

• Need of Models to Produce Reliable Traveler Information: Providing traffic conditions in 
real time to roadway users is also one of the primary tasks for incident traffic 
management. Some models or algorithms introduced in this study produced additional 
traffic information for the network motorists, such as the maximum queue length and 
total delay. Such information can be disseminated to motorists through an online traveler 
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information system and can be used to assist them in best selecting their routing strategies 
during the incident operational period. 
 

Taking the critical issues into account, this research made contributions on the following aspects: 
 

• Empirically investigated the effectiveness of a well-operated incident response program 
and found that an efficient response operation can also reduce the incident clearance 
duration and produce significant benefits. 

• Developed an efficient model for optimally allocating the available response units from a 
new perspective of minimizing the total incident-induced delay, rather than minimizing 
the total response time, as reported in most existing studies. The developed model’s 
performance and robustness have been confirmed from the extensive numerical results 
and the comparative study with the existing models and several states of the practice.     

• Developed a reliable model to predict the clearance duration of a detected incident, which 
features its strengths on the following aspects – 1) reducing the presentation scale and 
complexity, 2) being less sensitive to the available sample data due to the recursive 
partitioning, and 3) being more robust to the scenarios of having incomplete information. 
The performance of the developed prediction system has been demonstrated with the 
extensive incident data from CHART-MSHA.  

• Provided some insightful information on the interrelationships between key factors 
contributing to incident duration and their collective impacts on clearance times, which 
would be useful for traffic agencies to plan and improve their incident management 
programs. 

• Provided operational guidelines and tools for responsible agencies to conduct their 
assessment of traffic diversion plans as well as to design control strategies during the 
incident management period. 

• Integrated all essential models for incident response and traffic management into an 
efficient operational system that enables responsible agencies to maximize the benefits 
and minimize operating costs when contending with daily non-recurrent congestion. 

 
In summary, extensive field analyses conducted in this study have confirmed the need to contend 
daily non-recurrent congestion with an efficient and effective incident management program for 
optimal use of available resources and best coordination between all responsible agencies. For 
such needs, this study proposed an enhanced freeway traffic incident management system and 
developed several efficient, reliable, and robust technical models for its operations. If properly 
integrated with other systems for incident detection, diversion optimization, and travel time 
information, the integrated system developed in this study will substantially improve the quality 
and efficiency of motorists’ travel over congested highways. 
 

6.2 Future Research 

Although this study made significant progress on several critical issues associated with 
enhancing the efficiency and reliability of the freeway traffic incident management system, much 
remains to be further investigated. Some priority research areas to be pursued in the future are 
listed below: 
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1. Enhancing reliability of the incident response management strategy: The proposed 
strategy for allocating incident response units is developed under the assumption that 
only one incident may occur at a given time window and the distribution of incident 
frequencies over the target network is known and consistent over time. However, in very 
congested networks during peak periods, multiple incidents may happen concurrently and 
the response unit at the nearest depot location may not be available. Moreover, since 
incidents are random in nature, historical data of incident frequency usually exhibit 
significant variances. To contend with this issue, one will enhance the proposed incident 
management system with the following additional features: 

• Considering the likelihood of having multiple incidents over a short time period: 
the optimal allocating strategy can be redesigned to dynamically take care of 
multiple incidents occurring over the same time period.    

• Considering probability so that the optimal allocating strategy can be 
reformulated, based on both the mean and the variance of the incident 
distribution, to reflect its stochastic nature. 

• Investigating the pros and cons between the dispatching and patrolling strategies 
for different times of a day and further identify the strategy that would be more 
beneficial under various traffic conditions and incident patterns. 

• Studying the optimal fleet size based on the benefit-cost analysis for a given 
incident distribution, and then further determining the optimal fleet size, 
considering both the resource constraints and operational costs. 

2. Enhancing computational efficiency for real-time operations of the detour decision 
support system: In view of the critical role of computing efficiency in real-time 
operations, it is expected that some more efficient models should be developed to 
supplement or replace simulation- or optimization-based models to generate key traffic 
control parameters, such as optimal diversion rate and reduced total travel time by detour 
operations. 

3. Developing real-time models to evaluate the integrated incident response and 
management system: To assess the effectiveness and maintain the efficiency of an 
established system, it is essential that a rigorous evaluation process be developed and 
activated. The results of a real-time evaluation can help responsible agencies to better 
identify the appropriate MOEs (measures of effectiveness), effectively detect any area for 
further improvement, and distribute available information in a timely manner to other 
coordinated agencies as well as target roadway users. 
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APPENDIX 
Literature Review 

Introduction 

This chapter summarizes some major studies concerning freeway traffic incident management 
over the past decades, focusing on critical issues, modeling approaches, and potential research 
directions. This chapter divides the review results into the following categories: 

• Incident response strategies: focused on how best to use the available resources in 
response to detected potential incidents over the service area during a target time period; 
and 

• Incident duration estimation: highlighting the data issues and the major stream of 
methodologies to reliably estimate/predict the duration of a detected incident. 

The remaining sections present a summary of existing studies related to each category in 
sequence. 

Incident Response Strategies 

Many traffic studies have pointed out the critical role of efficient response to the total delay 
incurred by incidents and concluded that an increase in incident response time may contribute to 
the likelihood of having secondary incidents (Bentham, 1986; Brodsky and Hakkert, 1983; 
Mueller et al., 1988). The study results by Sanchez-Mangas et al. (2009) showed that a reduction 
of ten minutes in emergency response time could reduce vehicle collision and fatalities by 33 
percent. Most studies also conclude that dispatching emergency services units and clearing the 
incident scenes in a timely manner are the key tasks for minimizing incident impact 
(Kepaptsoglou et al., 2011; Huang and Fan, 2011).  
 
In improving the efficiency of emergency incident responses, both the availability and the 
accessibility of service units play essential roles. The availability of response units can differ, 
depending on the relationship between the emergency response resources and the likely 
distribution of incidents. Accessibility is usually measured in terms of transportation costs (e.g., 
travel time, travel distance, etc.) between dispatching sites and incident locations. Hence, two 
vital decisions often arise in planning and managing emergency services: how many response 
units are needed and where they should be allocated in response to the temporal and spatial 
distribution of incidents. The core methodology for dealing with this issue belongs to the 
category of facility location assignment.   
 
The core issue of the facility location problem is to locate a single warehouse from all candidate 
sites (Weber, 1929). Similar models have also been developed and applied in a variety of fields, 
including healthcare facilities, plants and warehouses, post offices, and landfills (Eiselt, 2007; 
Owen and Daskin, 1998).  
 
The two main issues in associating facility location studies with the emergency incident response 
are: (1) allocating emergency service units for recurrent emergency events, and (2) planning the 
locations; such as: the response centers to house the resources for emergency services and 
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incident management. Typically, key factors to be considered while designing and distributing 
emergency service resources include the total assets, operational costs, incident demand 
coverage, and incident response timeliness. The next three sections summarize three categories 
of studies, respectively, for optimizing incident response efficiency: covering models, P-median 
models, and P-center models. 

Covering Models 

Covering models, the most widely used approach for allocating emergency service units, attempt 
to provide “coverage” to all demand points that are considered covered only if a response unit is 
available to provide services to the demand points within a pre-specified distance limit. Two 
major schools of such methods are reported in the literature: the location set covering problem 
(LSCP) and the maximal covering location problem (MCLP).  

 
The LSCP is an earlier version of the emergency facility location model by Toregas et al. (1971); 
it seeks to minimize the required number of facility locations to cover all demand points. To 
overcome the deficiencies of the LSCP, several researchers (Church and ReVelle, 1974; White 
and Case, 1974; Schilling et al., 1979) developed various forms of the MCLP model. Their 
models aim to maximize the coverage of demands subjected to resource constraints and the 
minimal service standards. The MCLP and its variants have been broadly applied to various 
emergency service problems. One such study by Eaton et al. (1985) that involved planning the 
location of emergency response vehicles in Texas was reported to actually decrease the average 
emergency response time. 
 
The covering methodology for locating emergency services has also been extended to 
considering the stochastic or randomly determined nature of emergency events. One approach 
that reflected the complexity and uncertainty of the response allocation issue used chance-
constrained models (Chapman and White, 1974) to guarantee a certain level of service reliability. 
For instance, Daskin (1983) estimated the probability that at least one server is available to serve 
the request from any demand and formulated the maximum expected covering location problem 
(MEXCLP) to position P facilities to maximize the average of demand coverage. MEXCLP was 
enhanced later by ReVelle and Hogan (1986). With their proposed model, the probabilistic 
location set covering problem (PLSCP), uses an average server busy faction (qi) and a service 
reliability factor (a) for demand points and then places the facilities to maximize the probability 
of service units being free to serve within a particular distance. MEXCLP and PLSCP have been 
further modified and improved for other EMS (emergency medical service) location problems by 
many researchers. The modeling details of their studies are available in the literature (ReVelle 
and Hogan, 1989a; Bianchi and Church, 1988; Batta et al., 1989; Goldberg et al., 1990; and 
Repede and Bernardo, 1994). 
 
Another approach to tackle the stochastic properties of the emergency service location issue uses 
a scenario planning methodology to handle the multiple possibilities that a random event may 
vary over different emergency scenarios. In practice, responsible agencies may evaluate each 
scenario individually and then aggregate all strategies to develop scenario-specific solutions. For 
example, MCLP was extended by Schilling (1982) to incorporate scenarios, aiming to maximize 
the demand coverage over all considered scenarios. Schilling used individual scenarios to 
discover a range of good location decisions and then to determine the final locations designed to 
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all scenarios based on a compromise decision. Although such an approach is conceptually and 
computationally simple, it may not yield reliable results. Thus, Serra and Marianov (1999) 
developed a stochastic approach to represent the uncertainty of target parameters. Some other 
stochastic methods reported in the literature include stochastic programming (SP) and robust 
optimization (RO). In general, SP focuses on the expectation of performance measures so that it 
relies on the complete probability distribution of random parameters and thus has less 
consideration for the risk (Birge and Louveaux, 1997). In contrast, RO places more emphasis on 
the worst-case scenario, which tends to yield more conservative results. 
 
Similarly, Nair and Miller-Hooks (2009) solved a multi-objective, probabilistic, and integer 
programing model to relocate EMS units between calls in expectancy of future demand, and 
assessed its benefits over traditional static location strategies. Their results showed that a 
relocation strategy can be beneficial when resources are scarce. 

P-median models 

Another key method for evaluating the effectiveness of deployment strategies for emergency 
service involves measuring the average (or total) distance between the facilities and their demand 
sites. In general, as the average/total distance decreases, the accessibility and effectiveness of 
facilities increase. Hakimi (1964) used this property in developing his model, introducing the P-
median method to locate P facilities to minimize the average (or total) distance between facilities 
and demands. The original P-median model assumed that the demands at each node and the 
travel distances between the nodes of the network are deterministic. ReVelle and Swain (1970) 
later modeled the P-median problem as a linear integer program and solved it with a branch-and-
bound algorithm.  
 
In similar research, Carson and Batta (1990) developed a P-median model to produce the 
dynamic strategy that could best position ambulances to minimize the average response time for 
campus emergency service. Berlin et al. (1976) studied two P-median models to locate hospitals 
and ambulances. Their first model mainly focused on patient needs and aimed to minimize the 
average distance between the hospitals and demand points, as well as the average response time 
by ambulances from their bases to the demand points. Their second model was designed to 
enhance the performance of a system by adding a new objective function to minimize the 
average distance from the ambulance bases to the hospitals. Mandell (1998) adopted priority 
dispatching in a P-median problem to optimize the locations of emergency units for an EMS 
system that consisted of advanced life support (ALS) units and basic life support (BLS) units.  
 
The P-median model has also been extended to account for uncertainty in travel times and 
demand patterns. For instance, Mirchandani (1980) considered situations where service was 
unavailable for a demand and solved the problem by using a Markov process to create a system 
whose states were characterized by demand distribution, service and travel time, and service unit 
availability. Serra and Marianov (1999) introduced the concept of regret and min-max objectives 
in locating a fire station in Barcelona. Their model explicitly tackled the uncertainty in demand, 
travel time, and distance, using scenarios to integrate the variation of uncertain factors. Their 
model searched for a compromise solution by minimizing the maximum regret over the 
identified scenarios.  
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Haghani et al. (2003) proposed a model for the same subject by integrating a dynamic shortest 
path algorithm. They categorized incidents into five priorities based on severity. These priorities 
were applied to the objective function to minimize the total weighted travel time by giving 
higher weights to incidents with higher priorities, so that severe incidents would be responded to 
faster. Integrating a dynamic shortest path algorithm based on the real-time traffic information, 
their proposed dynamic dispatch model allows an en route diversion to avoid congested routes 
and reallocating units for more prompt responses to severe incidents under a set of constraints. 
This approach had been extended by integrating the generic algorithm (GA) to determine the 
optimal depot locations and the fleet size at each depot (Yang et al., 2004) to minimize the 
average travel time and the capital/operating costs (total fleet size). Yang et al. (2005) had 
further improved their model by enabling reallocation of depots for remaining vehicles (when 
several units are on duty) to maximize the service area coverage.  

P-center models 

While the P-median model pays attention to optimizing the overall system performance, the P-
center model concentrates on minimizing the worst system performance, emphasizing the 
importance of service inequity rather than the average system performance. The P-center model 
assumes that a demand is to be served by the nearest facility, thus making full coverage for all 
demand points always possible by minimizing the maximum distance between any demand and 
its nearest facility. However, unlike the full coverage offered by covering models, which requires 
excessive resources, the P-center model achieves its aims with limited resources.  
 
The first P-center model, posed by Sylvester (1857) more than a century ago, sought to identify 
the center of a circle with the smallest radius that could cover all target destinations. Since then, 
this model has been extended to a wide range of facility location applications, including medical 
(e.g., EMS centers and hospitals) and public facilities. For example, Garfinkel et al. (1977) 
modeled their problem with integer programming and successfully solved it with a binary search 
technique and a combination of exact tests as well as heuristics. The formulations by ReVelle 
and Hogan (1989b) for their P-center problem sought to minimize the maximum distance for 
available EMS units with a specified reliability (α). They considered system congestion and 
derived the probability of a service unit being busy to constrain the service reliability for all 
demands. 
 
The P-center models have also been extended to consider their stochastic aspect. For instance, 
Hochbaum and Pathria (1998) tried to minimize the maximum distances on the network over all 
time periods. Since the costs and the distances between locations differ in each time period, they 
used k fundamental networks to represent different time periods and then developed a 
polynomial-time approximation algorithm to solve for each problem. Another instance is the 
application for locating and dispatching three emergency rescue helicopters for EMS demands 
due to accidents related to skiing, hiking and climbing the north and south Alpine mountains 
during holiday seasons (Talwar, 2002). The problem was solved by using effective heuristics to 
minimize the worst response time. 
 
In addition to the mentioned studies, a wide range of applications with different formulations can 
be found in the literature (Handler, 1990; Brandeau et al., 1995; Daskin, 2000; and Current et al., 
2001). 
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Incident Duration Estimation 

Reliable estimation of incident duration has been studied by researchers for several decades with 
various methodologies. At the early stage, researchers mostly used descriptive statistics of the 
data from closed-circuit television (CCTV) logs (1964), police logs (1971), and time lapse 
cameras (1974) to estimate the incident duration distribution. As more advanced technologies for 
data collection emerged over the past decades, traffic researchers have developed more analytical 
methodologies. Most existing approaches found in the literature can be sorted into the following 
categories: (1) probabilistic distributions, (2) conditional probabilities, (3) regression models, (4) 
discrete choice or classification models, (5) decision, classification or regression trees, (6) time 
sequential models, and (7) unconventional methodologies. The rest of this section discusses each 
approach in detail. 

Probabilistic Distributions  

Probabilistic models, the first category of approaches for estimating incident duration, are 
relatively straightforward. These models center on the idea of viewing an incident’s duration as a 
random variable and attempting to find a probability density function (PDF) that can fit the data 
set. Golob et al. (1987) conducted their research using approximately 530 incidents involving 
trucks and found that they could model incident duration with a log-normal distribution. Their 
findings were later supported by Giuliano (1989), Garib et al. (1997), and Sullivan (1997) in 
their studies of freeway incident duration. Ozbay and Kachroo (1999) also found that the 
distribution of incident durations from their data set showed a shape very similar to a log-normal 
distribution, although a few statistical significance tests rejected their hypothesis. However, they 
realized that when the study data set was subdivided by incident type and severity, these subsets 
followed a normal distribution. This finding has important implications, since it supports the 
theory that incident duration is a random variable (Smith and Smith, 2002). Similarly, Jones et 
al. (1991) discovered that a log-logistic distribution could be used to describe their study data set 
from Seattle. Nam and Mannering (2000) found that their data set could be illustrated with the 
Weibull distribution. However, Smith and Smith (2002) could not find an appropriate probability 
distribution, including log-normal and Weibull distributions, to fit the incident clearance times 
for their study data.  

Conditional Probabilities 

Probability models for incident duration can be extended to integrate with a conditional 
probability methodology. The key idea of such models is to find the probability distribution of 
incident durations under certain given conditions — for example, the probability that an incident 
duration will run over thirty minutes, given that the incident has already lasted for ten minutes. It 
seems intuitively clear that the probability of an incident being removed within a given period of 
time would vary with how long the incident has already lasted — described as “duration 
dependence” by Nam and Mannering (2000) — and the incident’s characteristics. One 
interesting approach using this concept is the hazard-based duration model. This model allows 
researchers to calculate incident duration with conditional probability models. Such approaches 
expand the focus from simply estimating and predicting an incident’s duration to computing the 
likelihood that the incident will be cleared in the next short time period, given its sustained 
duration.  
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One study with this methodology was by Nam and Mannering (2000) who used a two-year data 
set from Washington State. Their study showed that each incident duration component (i.e., 
detection/reporting, response, and clearance times) was significantly affected by numerous 
factors in a different magnitude and direction so that different distribution assumptions were 
recommended for each component. Exploring various distributions (i.e., exponential, log-
logistic, log-normal, Weibull, and Gompertz) for hazard functions, this study showed that the 
Weibull model produced the best results for estimating incident detection/report durations and 
response times, whereas clearance times were performed the best on the log-logistic model. 
According to their research, it is a critical finding that the clearance times more likely end soon 
until an inflection point (89.20 minutes on their data) but less and less likely end soon afterward, 
while the probabilities that detection/reporting and response times end soon monotonously 
increase as time goes by. They also found that the estimated coefficients were unstable through 
the two-year data used in model development. Although Nam and Mannering concluded that this 
approach is useful for determining how each explanatory variable influences each component of 
the incident duration, they did not address the direct potential of this methodology to estimate or 
predict the incident duration for given explanatory variables.  
 
Chung (2010) recently used a very similar approach, the log-logistic accelerated failure time 
(AFT) metric model, but focused on estimating/predicting accident durations by using a two-year 
(2006 and 2007) accident data set from the Korean Highway Corporation (KHC). The estimated 
duration model, based on year 2006 data, was evaluated in two ways: the mean absolute 
percentage error (MAPE) and the percentage of predictions that are within a certain tolerance of 
their actual duration times. The model showed results in 47 percent of MAPE on year 2006 data, 
45 percent estimation accuracy within ten-minute errors, and 61 percent estimation accuracy 
within fifteen-minute errors. The author concluded that the prediction accuracy of the developed 
model was reasonably acceptable according to the scale of evaluation developed by Lewis 
(1982). However, the author did not validate his model on the new data. Instead, he tested the 
temporal transferability of the model by using year 2007 data and noted that the estimated model 
parameters can be stable over time, which was different from the results reported by Nam and 
Mannering.  

Regression Models 

Another simple methodology for predicting incident duration uses regression. Regression models 
usually include several binary indicators of independent variables to reflect incident characteristics 
and a continuous or categorical variable as a dependent variable (i.e., incident duration). One of 
the best-known linear regression models for incident duration prediction was developed by Garib 
et al. (1997) using 277 samples of data from California. They used various independent variables 
to represent incident characteristics (e.g., incident type, number of lanes affected by the incident, 
number of vehicles involved, and truck involvement) and weather conditions (rainy or dry). Their 
proposed final incident duration model has the following structure: 
 

 

where  Duration = incident duration (minutes) 

 X1 = number of lanes affected by the incident 

876521 24.068.017.02.0027.087.0)( XXXXXXDurationLog −+−++=
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 X2 = number of vehicles involved in the incident 

 X5 = truck involvement (dummy variable) 

 X6 = morning or afternoon peak hour indicator (0: morning peak hour; 1: afternoon peak 
hour) 

 X7 = natural logarithm of the police response time (minutes) 

 X8 = weather condition indicator (0: no rain; 1: rain) 

The logarithm form of incident duration indicates that the incident durations in this data set 
follow a log-normal distribution based on the Kolmogorov-Smirnov test. This result is similar to 
those of Golob et al. (1987) and Giuliano (1988). According to the authors, the police response 
time was the most significant factor affecting the resulting incident duration, followed by 
weather conditions, peak hour, truck involvement, and the combined effect of the number of 
lanes and the number of vehicles involved in the incident.  

Discrete Choice or Classification Models 

While most studies in the literature have viewed incident duration as a continuous variable, 
several researchers recategorized the continuous variable of incident duration into discrete time 
intervals (e.g., 10 to 25 minutes) to apply discrete choice or classification approaches. For 
instance, Lin et al. (2004) developed a system that integrates a discrete choice model and a rule-
based model to predict incident duration. They adopted the ordered probit models to first predict 
incident durations in a time interval format, followed by applying a rule-based supplemental 
model to enhance the accuracy of prediction results. Boyles et al. (2007) also redefined their 
original incident duration data into an interval format in developing their naïve Bayesian 
classifier (NBC), based on incident data from the Georgia Department of Transportation. They 
argued that the NBC has the following distinct advantages: (1) flexibility in accommodating 
changeable amounts of information (incomplete information or information received at different 
points in time), (2) increased robustness to outliers over standard techniques like linear 
regression, (3) computational simplicity, (4) easy adaptability as the number of samples for 
calibration grows, and (5) relative ease in interpreting the research results.  

Decision, Classification or Regression Trees 

Another approach frequently appearing in the incident duration literature is the decision, 
classification or regression tree method that has proven quite useful for discovering patterns in 
each data set without considering the fundamental probabilistic distribution (Smith and Smith, 
2001). This property is very helpful, since most incident data sets do not fit well to any 
commonly used distribution. Smith and Smith (2001) also pointed out that the pattern-
recognition model has been used recently to develop incident duration models. One 
representative model, developed by Ozbay and Kachroo (1999) for the Northern Virginia region, 
began with a model to predict the clearance time using linear regression based on a large sample 
size. Unfortunately, the completed analysis produced an unsatisfactory result (R2≈0.35), showing 
that their incident clearance time data followed neither a log-normal nor a log-logistic 
distribution. As an alternative method, they explored a decision tree model and finally generated 
relation patterns (see Figure A.1) for use in predicting clearance time.  
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Note that the decision tree comprises a series of decision variables. This is another advantage of 
the tree-type methodologies — their self-explanatory nature, which is rooted in the tree-structure. 
Users can easily understand the output by following the branches related to the conditions of 
variables. For instance, the tree uses an incident type as the first variable to decide if the detected 
incident type is known or not. Once it is classified as an unknown type, then the tree immediately 
provides an estimate of 45 minutes for the average clearance time. Otherwise, it moves to the next 
level to determine the type of an incident.  
 

 
FIGURE A.1 A Part of the Complete Decision Tree to Predict Clearance Time by Ozbay 

and Kachroo (1999) 
 
Smith and Smith (2001), inspired by the study of Ozbay and Kachroo, tried to develop a 
classification and regression tree (CART) using 6,828 accident clearance times collected from 
the Smart Travel Lab in Charlottesville, Virginia. Smith and Smith separated clearance times 
into three classes – 1-15 minutes as short, 16-30 minutes as medium, and over 30 minutes as 
long clearance times. Their optimal classification tree includes only five distinct binary decision 
variables among several available independent variables—tow-truck response, emergency 
medical service (EMS) response, day of the week, police response, and three or more vehicles 
involved. They also found out that the tree does not follow a chronological progress of an event; 
therefore, complete accident information is required before making the best prediction. The 
prediction accuracies on 1,707 test sets were about 77 percent, 19 percent, and 64 percent for 



96 
 

short, medium, and long clearance times, respectively. They noted that the model results imply 
that the relationship between accident characteristics and clearance times might be weak or 
independent from each other. However, they concluded that such a tree, developed based on a 
reliable and sufficient database, performs well, even though theirs yielded unsatisfactory results 
due to poor data quality.  
 
Xiaoqiang et al. (2009) also used CART to develop an incident duration model using a data set 
from the Beijing Transportation Management Bureau. The presented independent variables 
included time of day, incident type, incident severity, location, and disposal type. After removing 
statistically irrelevant variables by using multiple linear regressions, they developed a regression 
tree based on 65,000 data that consisted of 40 nodes. The model was validated with an 8,000-test 
data set by road in Beijing for 10-minute, 15-minute, and 20-minute error tolerance. The results 
showed about 30 percent average error. Despite relatively good model results, their tree model 
did not indicate decision criteria for each branching. 
 
The recent notable research of Ozbay and Noyan (2006) used Bayesian Networks (BN) to create 
dynamic incident duration estimation trees that enhance their adaptability to incomplete 
information in real-time prediction. Unlike a conventional classification tree, the variables 
consisting of nodes in BN are stochastic so that the state of the variable is determined by the 
probability distribution rather than by a fixed value. Moreover, BN can describe the overall 
dependency structure of many variables that allow bi-directional induction, while CART is 
limited to examine one-directional pair-wise associations. Using probabilistic inference, the 
model becomes a scenario-based decision tree that not only answers the predicted clearance time 
given immediately available incident related information but also diagnoses missing variables 
based on specific scenarios. For instance, the decision maker can estimate the clearance time for 
the incident on a two-lane roadway with three vehicles and three ambulances involved. Yet, 
he/she can also estimate how many injuries would occur due to this incident when its clearance 
time is between 0 and 30 minutes. The model was developed with 600 incident cases to estimate 
30-minute interval clearance times (i.e., 0-30 minutes, 30-60 minutes, etc.). Two validation 
methods, batch-prediction and cross-validation, were used with 100 samples, and the results 
were 78.4 percent and 79.56 percent, respectively.       
 
Like Ozbay and Noyan, Yang et al. (2008) includes a Bayesian theorem to develop a decision 
tree to predict incident durations with missing or inconsistent information. They inserted 
Bayesian nodes, following every decision node, to ask whether the required information is 
available or not. If the information is available, no further calculation will occur for that node. 
Otherwise, the model uses Bayesian theory to compute the value of the node. Then, the 
computed Bayesian node value is used to estimate the time interval class to which the detected 
incident belongs. They generated a validation data set that includes 20 percent missing or 
incomplete data to test the adaptability and robustness of their model. Their model reportedly 
outperformed the traditional classification tree model developed on the same data set; the 
Bayesian decision tree and classification tree yielded 74 and 46 percent prediction accuracies, 
respectively. 
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Time Sequential Models 

Khattak et al. (1995) realized that the full set of variables for incident forecasts would be 
available at the moment the incident was cleared. Although prediction models based on this total 
set of variables would be more accurate and reliable, they are less practical for use in real-time 
incident management operations, precisely because a full set of variables would only become 
available after clearing the incident. Thus, they introduced a time sequential model that focuses 
on predicting real-time incident duration under partial information. Their model considers ten 
distinct stages of incident duration, based on the availability of information. Each stage estimates 
different ranges of incident duration with a separate truncated regression model. As the model 
moves to the next stage, it includes progressively more variables to explain the stage’s duration. 
Despite its originality and reasonability, this model was not tested or validated due to the lack of 
field data. The authors also mentioned that the purpose of their study was to introduce and 
demonstrate the time sequential model rather than to prove its performance in traffic operations.  
 
Since then, their approach has been extended and enhanced by several researchers. For instance, 
Wei and Lee (2007) proposed an adaptive procedure that includes two artificial-neural-network-
based models for sequentially forecasting an incident’s duration. The first model, the so-called 
Model A, was designed to predict the duration of the detected incident at its notification, at which 
point Model B takes over and updates the duration at multiple periods until clearance of the 
incident. The performances of these models were evaluated with three criteria: mean absolute 
error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE), for 
six experiments of predicted incident durations at every forecast time period. The results showed 
that most MAEs were less than 800 seconds, and most MAPEs were less than 40 percent. 
Moreover, most RMSEs were less than 1100 seconds, and these results were highly likely to 
decrease as the time point of forecast passes. Based on the results, the authors concluded that the 
proposed models can yield reasonable forecasts as time goes by. However, their model was 
trained with only 18 quite homogeneous incidents as they are all from the same roadway over a 
6-month period, and they did not specify the sample size for testing their model. In addition to 
the incident characteristics, the proposed model required traffic data from the loop video detector 
(VD), the time-space relationship between a detected incident and the VD data, and the geometry 
characteristics as inputs, which are usually unavailable in a common incident database.   
 
Later, they tried to improve their model by adding a procedure to select a best-performing subset 
of features using k-mean clustering method (Lee and Wei, 2008), but the results were not 
satisfactory. Then, they used a generic algorithm (GA) (Lee and Wei, 2010) and found that 
reducing the dimensionality of input features can decrease the cost of acquiring data and increase 
the interpretability and comprehensibility of model outputs. Furthermore, they claimed that data 
simplification can eliminate irrelevant data that can mislead the learning process and impair the 
development of the final model. In fact, they reported that the MAPE for forecasted incident 
duration at each time period dropped, mostly falling below 29 percent after they applied their 
proposed feature selection method. However, similar to their previous research, their model was 
developed and tested based on only 24 and 15 accidents, respectively, which are, again, collected 
from one roadway over a 6-month period. Although the proposed feature selection method 
significantly reduced the number of required input variables and achieved better prediction 
accuracy, the model still required traffic data as an input.    
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Qi and Teng (2008) also developed a time sequential procedure that divides the incident 
management process into multiple stages (three stages in their example), depending on the 
availability of information. They developed a log-logistic hazard-based duration regression 
model for each stage, with different variables representing different available data. These 
developed regression models provide the estimates for coefficients of explanatory variables and 
the parameters of a probability distribution describing incident duration. The truncated median of 
incident duration, based on these estimates, could predict the remaining incident duration online. 
They evaluated the prediction performance of their proposed model with respect to the 
percentage of correctly predicted duration at a specific percentage of error tolerance. As the 
percentage of error tolerance increased, the percentage of correctly predicted incident duration 
also increased as expected. Also, the prediction accuracy for the third stage model was higher 
than the one for the second stage model, and the prediction accuracy of the second stage model 
was higher than that of the first stage model at any error tolerance level. They concluded that the 
prediction accuracy increased as more information was integrated into the developed models. 
However, they did not validate their models on the new dataset.  

Unconventional Methodologies  

While statistical analysis had been the main approach in the early history of the incident duration 
study, recent research focuses on the applications of unconventional methodologies, including 
machine learning algorithms. One of the most popular approaches is artificial neural networks 
(ANN). Wang et al. (2005) pointed out that many problems and parameters in the transportation 
field are ambiguous, characterized by linguistic variables, and non-linearly related. Such 
characteristics are difficult to model by traditional methodologies. Thus, they used ANN to 
analyze the duration of incidents, particularly vehicle breakdown duration, and compared its 
results with the fuzzy logic (FL) ones. Two ANNs with 10 neurons and17 neurons in the hidden 
layer, respectively, and a fuzzy logic model were trained using 113 vehicle breakdown incidents 
occurring on M4 in UK. There were four input variables available: vehicle type, location, time of 
day, and report mechanism. Through the comparison of model results, they found that the ANN 
with 17 neurons performed the best with respect to the adjusted R2 and the root mean square 
error (RMSE), followed by the fuzzy logic model and ANN with 10 neurons in the hidden layer. 
Their sensitivity tests on the input variables showed that all input variables have a significant 
influence on estimated vehicle breakdown durations. They also reported that their best model 
(ANN with 17 neurons) showed 0.411 for R2 and 19.5 minutes for RMSE, better than the 
estimates with the operator’s judgment, which is 42 minutes for RMSE. However, they admitted 
that the proposed model failed to predict the larger values and outliers due to insufficient 
explanatory variables. 
  
Guan et al. (2010) also used ANN with 25 nodes in a hidden layer to develop a model for 660 
incidents data collected from Guangzhou in China. Unlike other reported incident data in the 
literature, their average incident duration was longer (60.5 minutes) and only a few cases lasted 
less than 10 minutes. The model developed with 8 input factors was validated based on 170 
incidents and showed 33 percent prediction accuracy within 10 minutes’ error tolerance and 63 
percent accuracy within 20 minutes’ error tolerance. The correlation coefficient of predicted and 
observed values was 0.85.  They concluded that the model results are acceptable by the incident 
management process but not very accurate for predicting itself. According to them, the 
unsatisfactory prediction accuracy may be due to the randomness in the incident data itself rather 
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than the model, since they experienced no significant improvement on the prediction accuracy 
through various approaches.  
 
In the incident duration study by Wu et al. (2011), support vector regression (SVR) was applied 
on 1636 incidents from the Netherlands, since this approach demonstrates advantages in solving 
small sample, non-linear and high-dimensional pattern recognition problems. Their database 
included three incident types: vehicle break down, lost load, and accident. Since they show 
different natures in terms of the processing mechanism and associated factors, a separate 
duration model was developed for each type of incident. The model was validated on 327 
samples with three criteria. The incident duration model for breakdown showed the highest 
correlation coefficient (0.54), followed by the models for accident (0.22), and lost load (0.17). 
The mean absolute errors were 12.9, 13.2, and 12.3 minutes for models for breakdown, lost load, 
and accident, respectively. The prediction accuracies with 10 minutes’ error tolerance were 44.09 
percent, 53.97 percent, and 55.03 percent, whereas the prediction accuracies with 15 minutes’ 
error tolerance were 68.82 percent, 76.92 percent, and 71.01 percent for breakdown, lost load, 
and accident, respectively. These results were comparable to other studies’ results, but one 
should note that their data were preprocessed to exclude too short (less than 10 minutes) and too 
long (over 90 minutes) incident durations in the analysis. They also pointed out that the common 
large errors in the long incident durations possibly may be due to the lack of detailed or 
unobservable explanatory variables to capture the randomness of incident durations and the 
inconsistency of responsible agencies’ operational efficiency.  
 
Finally, a few comparative studies are reported in the recent literature. One interesting study was 
conducted by Valenti et al. (2010) to compare various statistical modeling and machine learning 
algorithms, including multiple linear regression (MLR), prediction/decision tree (DT), artificial 
neural network (ANN), support/relevance vector machine (RVM), and k-nearest neighbor 
(KNN). Based on 237 incident data occurred during a three-month period in Italy, they reported 
that the RVM showed the best performance with 13.65 minutes and 17.29 minutes for MAE and 
RMSE, respectively, whereas the DT was the least reliable, showing 16.66 minutes and 23.07 
minutes for MAE and RMSE, respectively. However, they also found that each approach has its 
own strengths and weaknesses. For instance, the MLR best performed for short durations (< 30 
minutes) with 9 minutes of MAE, while DT and RVM showed good results for medium 
durations (31-60 minutes). On the other hand, the ANN was the only model predicting well for 
the long duration (> 90 minutes). Based on these findings, they concluded that to enhance the 
prediction reliability a preliminary incident classification scheme could be conducted before, and 
then an appropriate approach could be applied for each category of incident durations. 
 
In summary, although a variety of models has been proposed in the literature and reported to 
achieve acceptable results, most of such studies were developed on a limited-scale data set that 
collected either during a short period or on a specific roadway segment. Furthermore, many of 
those models were not validated with real-world data, and some real-world operational 
constraints were not included in the formulations. Besides, most research findings are location-
specific, unlikely to be transferable to other locations. Therefore, any target application in 
practice needs to either recalibrate existing models in the literature with new data sources, or to 
develop new formulations to reflect the constraints and unique operational nature of the target 
application. 
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Grounded on the accomplishments of existing studies on various aspects of incident 
management, this research aims to further develop a reliable operational system that can 
effectively address the following critical issues: 

• Tackling heterogeneity in most incident data sets; 
• Enhancing the prediction performance; 
• Investigating the interactions between incident clearance durations and associated 

factors; and 
• Assessing the prediction model’s transferability and robustness for different data sets 

 
 

Descriptions of Classifiers Constituting SCAR 
(continued from TABLE 4.5) 

 
TABLE A.1 Descriptions of Classifiers Constituting SCAR 

No. Description of Classifier 
Clearance 

Time 
(minutes) 

1 IF 
(road=I895 & incident_type=disabled) or 

(noTT=0 & noSDsh=0 & incident_type=disabled) or 
(noTT=0 & road=US50 & incident_type=disabled) 

THEN Minor (≤30) 

2 ELSE-
IF 

(OC=TOC3 & noLane=13 & county=MO & incident_type=cpd) or 
(noTT=0 & road=I495 & incident_type=disabled & pavement=dry) or 

(chart=1 & noLane=12 & road=I95 & incident_type=disabled) 
THEN Minor (≤30) 

3 ELSE-
IF 

(OC=TOC3 & SDBmain=minor & pavement=unspecified) or 
(OC=AOC_South & noLane=12 & road=US50) or 

(Weekday & incident_type=disabled & detection=CHART) 
THEN Minor (≤30) 

4 ELSE-
IF 

(totalveh=2 & incident_type=fatality) or 
(night=0 & road=other & incident_type=fatality) THEN Major 

(>120) 

5 ELSE-
IF 

(noTT=0 & county=3 & incident_type=disabled) or 
(OC=TOC3 & noSDBmain=0 & incident_type=cpd) THEN Minor (≤30) 

6 ELSE-
IF 

(noSUT=0 & non-holiday & exit=22 on I495, I270, I695, and US50) or  
(SDBmain=minor & county=MO & detection=CHART) or 

(noSDsh=2 & noSDBmain=0 & noODBsh=0 & incident_type=disabled) 
THEN Minor (≤30) 

7 ELSE-
IF 

(night=0 & noODBsh=0 & exit=31 on I495, I270, I695, and I83) or  
(noODmain=3 & SDBmain=minor & county=Anne Arundel) or 

(chart=1 & noLane=13 & noSDBmain=0 & peakhr=PMpk) 
THEN Minor (≤30) 

8 ELSE-
IF 

(noLane=12 & SDBmain=minor & road=I495 & incident_type=cpd) or  
(totalveh=2 & noSDBmain=0 & county=Frederick & incident_type=cpd) 

or 
(noLane=12 & noSDBsh=1 & incident_type=cpd & peakhr=PMpk) 

THEN Minor (≤30) 

9 ELSE-
IF 

(region=Baltimore & incident_type=cpi & detection=CCTV) or  
(county=BC & incident_type=cpi & pavement=unspecified & detection 

=MDTA) or 
(OC=AOC_Central & totalveh=3 & incident_type=cpi & non-holiday) 

THEN Intermediate 
(30 – 120) 
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10 ELSE-
IF 

(noSUT=0 & noSDsh=2 & noSDBsh=1 & exit=29 on I95, I495, and 
I695) or  

(noSDBsh=0 & ODBmain=minor & road=I895 & county=BC) or 
(OC=TOC4 & noPVS=0 & noSDBsh=1 & incident_type=fire) 

THEN Minor (≤30) 

11 ELSE-
IF 

(night=0 & SDBmain=minor & road=I495 & pavement=unspecified) or  
(OC=TOC7 & noPVS=1 & noSUT=0 & incident_type=cpd) or 

(noSDBmain=0 & road=I695 & incident_type=cpd & peakhr=AMpk) 
THEN Minor (≤30) 

12 ELSE-
IF 

(night=0 & chart=1 & totalveh=5 & noSDBsh=1) or  
(Weekend & road=I495 & region=Washington & incident_type=cpi) THEN Intermediate 

(30 – 120) 

13 ELSE-
IF 

(noPVS=0 & noTT=0 & ODBmain=minor & incident_type=unknown) or  
(night=0 & noLane=12 & county=Baltimore & incident_type=disabled) 

or 
(OC=TOC3 & totalveh=2 & noSDsh=2 & pavement=unspecified) 

THEN Minor (≤30) 

14 ELSE-
IF 

(OC=AOC_North & noSDBsh=0 & region=Baltimore & 
incident_type=cpi) or  

(noPVS=1 & SDBmain=minor & incident_type=cpi & peakhr=PMpk) or 
(chart=1 & noSDBsh=0 & incident_type=cpi & detection=MDTA) 

THEN Minor (≤30) 

15 ELSE-
IF 

(night=0 & pavement=dry & non-holiday & exit=27 on I-495/95, I-695, 
US 50, and I-83) or  

(OC=TOC4 & noSDsh=2 & SDBmain=minor & pavement=unspecified) 
or 

(OC=TOC4 & noSUT=0 & road=I95 & incident_type=cpd) 

THEN Minor (≤30) 

16 ELSE-
IF 

(night=0 & noSUT=0 & noSDmain=4 & noODsh=4) or  
(night=0 & totalveh=1 & SDBmain=severe & region=Baltimore) or 

(OC=AOC_Central & chart=0 & noLane=13 & peakhr=non-pk) 
THEN Minor (≤30) 

17 ELSE-
IF 

(totalveh=2 & noTT=2 & peakhr=non-pk) or  
(chart=1 & incident_type=cpd & detection=local police) or 

(Weekday & chart=1 & region=Southern & peakhr=non-pk) 
THEN Major 

(>120) 

18 ELSE-
IF 

(night=0 & SDBmain=minor & road=I495 & pavement=wet) or  
(OC=TOC4 & noLane=9 & incident_type=cpd & detection=CHART) or 

(night=0 & noSDBsh=0 & pavement=wet & detection =MDTA) 
THEN Minor (≤30) 

19 ELSE-
IF 

(noSUT=1 & noLane=12 & road=I695 & pavement=dry) or  
(OC=TOC4 & noSDsh=2 & incident_type=cpi & detection=SHA) or 

(totalveh=1 & SDBmain=very-severe & ODBmain=minor & road=I95) 
THEN Intermediate 

(30 – 120) 

20 ELSE-
IF 

(pavement=dry & non-holiday & exit=11 on I-695) or  
(noTT=0 & noSDBmain=1 & incident_type=disabled) or 

(OC=TOC4 & totalveh=2 & noLane=12 & noSDBmain=1) 
THEN Minor (≤30) 

21 ELSE-
IF 

(OC=SOC & noSUT=1 & road=other) or  
(chart=1 & noPVS=0 & region=Western & detection=state police) or 

(night=1 & totalveh=1 & noTT=1 & incident_type=cpd) 
THEN Minor (≤30) 

22 ELSE-
IF 

(night=0 & noTT=2 & noODBmain=0 & incident_type=cpd) or  
(noSDBsh=1 & region=Eastern & incident_type=cpd & detection=state 

police) or 
(noTT=1 & road=I95 & incident_type=cpd & peakhr=non-pk) 

THEN Intermediate 
(30 – 120) 

23 ELSE-
IF 

(noPVS=0 & noSDmain=4 & exit=23 on I495, I695, and US50) or  
(night=0 & noPVS=0 & noSDsh=0 & incident_type=cpd) or 
(noPVS=0 & noTT=0 & noSDBmain=1 & county=Howard) 

THEN Minor (≤30) 
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24 ELSE-
IF 

(road=I695 & exit=7) or  
(chart=1 & noTT=1 & noSDBmain=0 & incident_type=cpd) or 

(OC=TOC3 & noSUT=0 & incident_type=cpd & peakhr=AMpk) 
THEN Minor (≤30) 

25 ELSE-
IF 

(Weekday & totalveh=4 & road=I95 & incident_type=cpi) or  
(night=0 & noSDBsh=1 & noSDBmain=2 & road=US50) or 

(night=0 & noTT=0 & SDBmain=very-severe & county=MO) 
THEN Intermediate 

(30 – 120) 

26 ELSE-
IF 

(OC=TOC3 & totalveh=2 & SDBmain=moderate & detection=CHART) 
or  

(noSDBmain=0 & incident_type=cpd & peakhr=AMpk & detection=state 
police) or 

(OC=SOC & noODBsh=0 & peakhr=PMpk & detection=CHART) 

THEN Minor (≤30) 

27 ELSE-
IF 

(noPVS=3 & noODBmain=0 & incident_type=cpi) or  
(noTT=0 & noSDBsh=2 & noODBmain=0 & detection=250) or 

(noSUT=0 & noSDBsh=1 & road=I70 & peakhr=PMpk) 
THEN Intermediate 

(30 – 120) 

28 ELSE-
IF 

(OC=TOC7 & noSDsh=2 & incident_type=fire & pavement=dry) or  
(OC=TOC7 & totalveh=1 & noSDmain=2 & incident_type=cpd) or 

(totalveh=2 & noSDBsh=1 & noSDBmain=0 & road=other) 
THEN Minor (≤30) 

29 ELSE-
IF 

(chart=1 & peakhr=non-pk & exit=19 on I-495 and I-695) or  
(OC=TOC4 & totalveh=2 & noSDmain=3 & incident_type=cpd) or 

(noSDBmain=1 & incident_type=cpi & peakhr=PMpk & 
detection=CHART) 

THEN Minor (≤30) 

30 ELSE-
IF 

(totalveh=3 & noTT=0 & noSDmain=4 & county=MO) or  
(night=1 & chart=0 & pavement=wet & non-holiday) THEN Intermediate 

(30 – 120) 

31 ELSE-
IF 

(night=0 & noPVS=0 & detection=MDTA & exit=64 on I95) or  
(OC=TOC3 & noLane=12 & county=MO & detection=state police) or 

(chart=0 & SDBmain=minor & pavement=wet & peakhr=non-pk) 
THEN Minor (≤30) 

32 ELSE-
IF 

(noODBmain=0 & incident_type=cpi & exit=20 on I495, I695, I83) or  
(noSDBsh=0 & noSDBmain=1 & detection=MDTA & exit=56 on I95) or 

(noSDsh=2 & road=I95 & county=PG & detection= state police) 
THEN Minor (≤30) 

33 ELSE-
IF 

(noODBsh=1 & SDBmain=minor & region=Baltimore & peakhr=AMpk) 
or  

(Weekend & noPVS=1 & noTT=0 & SDBmain=minor) or 
(noPVS=1 & noTT=0 & SDBmain=very-severe & pavement=dry) 

THEN Intermediate 
(30 – 120) 

34 ELSE-
IF 

(totalveh=2 & noSDsh=2 & pavement=dry & detection=local police) or  
(night=1 & totalveh=3 & noTT=0 & noSDmain=4) or 

(noSDmain=4 & road=other & county=Baltimore & incident_type=cpd) 
THEN Intermediate 

(30 – 120) 

35 ELSE-
IF 

(night=0 & noTT=0 & detection=MDTA & exit=74 on I-95) or  
(night=0 & noSUT=0 & noSDBmain=0 & county=Cecil) or 

(noLane=13 & noSDBmain=1 & county=Baltimore & 
detection=CHART) 

THEN Minor (≤30) 

36 ELSE-
IF 

(Weekday & noSUT=0 & noLane=7 & region=Washington) or  
(noPVS=1 & county=Balimore & incident_type=cpd & 

detection=CHART) or 
(Weekend & noLane=13 & noSDBsh=0 & road=I95) 

THEN Minor (≤30) 

37 ELSE-
IF 

(noTT=0 & road=I95 & county=Harford & pavement=unspecified) or  
(Weekday & chart=0 & noSDsh=1 & noSDmain=4) or 
(OC=TOC4 & noLane=13 & road=I95 & non-holiday) 

THEN Intermediate 
(30 – 120) 
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38 ELSE-
IF 

(OC=TOC3 & totalveh=1 & incident_type=cpi & detection=CHART) or  
(noLane=12 & SDBmain=minor & peakhr=AMpk & detection=state 

police) or 
(OC=TOC7 & totalveh=2 & noSDmain=4 & detection=CHART) 

THEN Minor (≤30) 

39 ELSE-
IF 

(night=1 & detection=local police) or  
(OC=SOC & totalveh=1 & ODBmain=very-severe) or 

(night=1 & noODsh=2 & noODBsh=2 & ODBmain=very-severe) 
THEN Major 

(>120) 

40 ELSE-
IF 

(noSDmain=3 & noSDBmain=2 & region=Washington) or  
(OC=TOC5 & noODsh=2 & noODBsh=0 & SDBmain=minor) or 

(noLane=13 & pavement=dry & peakhr=AMpk & detection=CHART) 
THEN Minor (≤30) 

41 ELSE-
IF 

(totalveh=4 & noSDBmain=1 & noODBmain=0 & region=Baltimore) or  
(chart=1 & noSDBsh=0 & incident_type=cpi & pavement=unspecified) 

or 
(night=1 & noSDBmain=1 & incident_type=cpi & non-holiday) 

THEN Intermediate 
(30 – 120) 

42 ELSE-
IF 

(totalveh=6 & noTT=0 & noSDBsh=1 & noSDBmain=0) or  
(OC=TOC7 & noSDBmain=0 & road=other & pavement=wet) or 

(noSDBsh=1 & incident_type=cpi & pavement=unspecified & 
detection=CHART) 

THEN Minor (≤30) 

43 ELSE-
IF 

(SDBmain=minor & road=other & peakhr=non-pk & detection=SHA) or  
(night=1 & chart=1 & totalveh=1 & SDBmain=very-severe) or 

(night=1 & totalveh=2 & county=Baltimore & detection=state police) 
THEN Intermediate 

(30 – 120) 

44 ELSE-
IF 

(Weekday & incident_type=cpi & pavement=dry & exit=24) or  
(OC=AOC_Central & totalveh=1 & noSDBmain=2 & non-holiday) or 

(noLane=12 & noSDBsh=1 & road=I695 & detection=state police) 
THEN Minor (≤30) 

* MO = Montgomery, BC = Baltimore City, PG= Prince George, and MDTA = Maryland 
Transportation Authority 
 
 

TABLE A.2 Descriptions of Variables Included in SCAR 
Variables Descriptions 

Incident_type 

Types of incidents: 
• disabled: disabled vehicles 
• cpi: collision with personal injury 
• cpd: collision with property damage 
• fatality: collision with fatality 
• fire: vehicle on fire 
• unknown: no specific information available 

noTT Number of tractor-trailers involved with the incident 
noPVS Number of pickup trucks, vans, or SUVs involved with the incident 
noSUT Number of single unit trucks involved with the incident 
totalveh Total number of vehicles involved with the incident 
noLane Number of lanes on both directions (including shoulders and medians) 

noSDsh Number of shoulder lanes on the same direction that an incident occurred 
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noSDBsh Number of blocked shoulder lanes on the same direction that an incident 
occurred 

noODsh Number of shoulder lanes on the opposite direction that an incident 
occurred 

noODBsh Number of blocked shoulder lanes on the opposite direction that an 
incident occurred 

noSDmain Number of main lanes on the same direction that an incident occurred 

noSDBmain Number of blocked main lanes on the same direction of  where an incident 
occurred 

SDBmain 

The ratio of number of blocked lanes to the total number of lanes on the 
same direction of where an incident occurred: 
• minor: ≤ 0.25 
• moderate: 0.25 – 0.5 
• severe: 0.5 – 0.75 
• very-severe: > 0.75 

noODmain Number of main lanes on the opposite direction that an incident occurred 

noODBmain Number of blocked main lanes on the opposite direction of where an 
incident occurred 

ODBmain 

The ratio of number of blocked lanes to the total number of lanes on the 
opposite direction of where an incident occurred: 
• minor: ≤ 0.25 
• moderate: 0.25 – 0.5 
• severe: 0.5 – 0.75 
• very-severe: > 0.75 

OC Responsible operation center 
pavement Pavement conditions: dry, wet, snow/ice, chemical wet, and unspecified 

chart 1 if CHART is involved in the clearance; otherwise 0 
detection Incident detection sources 

night 1 if an incident occurs during 8 p.m. –  6 a.m. 

peakhr 
• AMpk: AM peak periods (7 a.m. – 9:30 a.m.) 
• PMpk: PM peak periods (4:00 p.m. – 6:30 p.m.) 
• Non-pk: off peak periods 

region 

• Washington: Fredrick, Montgomery, Prince George, and D.C. 
• Baltimore: Anne Arundel, Baltimore City, Baltimore, Carroll, 

Harford, and Howard 
• Eastern: Caroline, Cecil, Dorchester, Kent, Queen Anne’s, Somerset, 

Talbot, Wicomico, and Worcester 
• Southern: Calvert, Charles, and Saint Mary’s 
• Western: Allegany, Garrett, and Washington  
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