SPR-Part B MD-20-SHA/UM/4-54

Larry Hogan Governor Boyd K. Rutherford Lt. Governor Gregory Slater Secretary Tim Smith, P.E. Acting Administrator

MARYLAND DEPARTMENT OF TRANPORTATION STATE HIGHWAY ADMINISTRATION

RESEARCH REPORT

OPTIMIZING FIELD DATA COLLECTION & DEVELOPING ADVANCED GPR PROCESSING MODULES

Dimitrios G. Goulias

UNIVERSITY OF MARYLAND

FINAL REPORT

April 2020

This material is based upon work supported by the Federal Highway Administration under the State Planning and Research program. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Federal Highway Administration or the Maryland Department of Transportation. This report does not constitute a standard, specification, or regulation.

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. MD-20-SHA/UM/4-54	2. Gover	rnment Access	ion No.	3. Re	cipient's Catalog N	0.		
4. Title and Subtitle				5. Report Date				
Optimizing Field Data Collection & Develop	oing Adva	nced GPR Proc	essing Modules	ng Modules April 2020				
	6. Pe	rforming Organiza	tion Code					
7. Author(s)		8. Pe	rforming Organiza	tion Report No.				
Dr. Dimitrios G. Goulias								
9. Performing Organization Name and Ad	ldress			10. V	Vork Unit No.			
University of Maryland								
Department of Civil and Environmental Eng	ineering			11. (Contract or Grant N	l o.		
College Park, Maryland 20742					SHA/UM/4	-54		
12. Sponsoring Agency Name and Address	s			13. T	ype of Report and	Period Covered		
Maryland Department of Transportation (SP	R)			SPR-	B Final Report (Dec	ember 2017-		
State Highway Administration			-	Dece	mber 2019)			
Office of Policy & Research				14. Sponsoring Agency Code				
707 North Calvert Street				(7120) STMD - MDOT/SHA				
Baltimore MD 21202								
15. Supplementary Notes								
16 Abstract								
Over the past several years Maryland Depart	ment of T	ransportation S	tata Highway Adı	minist	ration (MDOT SHA)	developed a		
Ground Penetration Radar (GPR) data collect	tion plan	for bridge decks	s. GPR data was c	collecte	ed and analyzed to m	onitor several		
hundred bridge decks. MDOT SHA worked	with the I	Maryland Envir	onmental Service	s (ME	S) and the University	of Maryland		
(UMD) to develop new analysis modules for	concrete	delamination ar	nd HMA overlay o	conditi	on and evaluate the	feasibility of		
higher-speed protocols for SF-GPR data coll	ection. A	bridge deck co	ndition assessmen	nt mod	el (BDCAM) was de	eveloped to		
estimate the deck condition and condition sta	ate. Deck	condition is def	ined based on a fu	izzy m	odel of the various lo	evels of defect		
and deterioration of the deck. The UMD stud	ly concluc	led that the BD	CAM model estim	nates a	gree with the NBI va	alues for 90.9%		
of the 219 bridge decks analyzed within two inspection deck reports for eight bridges pro-	vided cons	sistent conclusion	are. The comparis	of the	eight cases all in the	"fair" category		
The study also concluded that it is possible to	o increase	the GPR data a	cauisition speed f	from 1	0 mph to 13 mph on	driving lanes		
with low surface roughness (IRI less than 10	0).		- 1		·			
17. Key Words			18. Distribution	n State	ement			
GPR, SF-GPR, bridge deck, Ground Penetra	ting Rada	r.	This document is available from the Research Division upon request.					
19. Security Classif. (of this report)		20. Security	Classif. (of this p	age)	21. No. of Pages	22. Price		

None

None

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

27

TABLE OF CONTENTS

H	Page
LIST OF FIGURES	ii
LIST OF TABLES	iii
CHAPTER 1: INTRODUCTION	
INTRODUCTION	1
RESEARCH APPROACH	1
CHAPTER 2: REVIEW & ASSESSMENT OF HIGHER SPEED PROROCOLS ON	
SF-GPR DATA ANALYSIS	4
CHAPTER 3: REVIEW & ASSESSEMENT OF NEW MODULES FOR SF-GPR BRIDGE	<u>-</u>
DECK ANALYSIS	
LITERATURE REVIEW	11
REVIEW OF REVISED SF-GPR ANALYSIS PIPELINE	
INCORPORATING NEW DATA ELEMENTS	13
CHAPTER 4: SUMMARY & CONCLUSIONS	24
FUTURE WORK	24
REFERENCES	26
APPENDIX	28

LIST OF FIGURES

Figure 1 SF-GPR 24 transmitter-receiver antenna pairs.	7
Figure 2. Cross-section of a typical bridge deck	8
Figure 3. Example B-scan profile of rebar detection for a bridge deck with overlay	9
Figure 4. Rebar detection (red hyperbolas) matching ground truth conditions (green).	10
Figure 5. DX 1821 Antenna Array Layout and CXMP configurations	11
Figure 6. Example Profile View (B-scan) of three-span bridge deck	14
Figure 7. 2019 SF-GPR Analyses Pipeline	15
Figure 8. Example of GPR summary page	16
Figure 9. Processing levels in BDCAM model	17
Figure 10. Hierarchy and correspondence of GPR data elements in BDCAM model	18
Figure 11. Source of information and definitions for initial ground truth	20
Figure 12. Condition state data	20
Figure 13. Bridge Deck Condition from BDCAM analysis, 219 bridge decks	21
Figure 14. Comparison of BDCAM & NBI Ground Truth for deck condition/state	21

LIST OF TABLES

Table 1. SF-GPR settings for MDSHA GPR data collection protocols	4
Table 2 Rebar detection in function of sampling interval dx.	9
Table 3. CXMP configurations	12
Table 4. Percent true, false positive, false negative for deck and span conditions	19
Table 5. NBI & BDCAM Bridge Deck Condition Rating for Bridges with inspection reports	23
Table 6. Condition State Data for Bridge with Inspection Reports	23

CHAPTER 1: INTRODUCTION

Over the last two years the Maryland Department of Transportation State Highway Administration (MDOT SHA) has developed a successful Ground Penetration Radar (GPR) data collection plan for bridge decks. Based on state-of-the-art GPR data collection methods and improved interpretation analysis developed and implemented in <u>the Phase II study</u> MDOT SHA is able to monitor several hundred bridge decks over a short period of time versus a limited number of structures monitored in the past using the traditional inspection methods. Furthermore, the development and use of automation modules in Phase II further increased productivity and accuracy of GPR data analysis.

In this Phase III project, a separate MDOT SHA contract with the Maryland Environmental Services (MES) and the Phase II subcontractor, Starodub, was issued to address: i) the development of new analysis modules for delamination and hot mix asphalt (HMA) overlay thickens and condition, and, ii) feasibility of higher-speed protocols for SF-GPR data collection. Thus, the research under the University of Maryland (UMD) task focused on the review and assessment of the proposed new GPR analysis modules developed in the MES/Starodub task, as well as an assessment of the impact of higher speed data collection protocol.

RESEARCH APPROACH

To achieve the objectives of this study the following tasks were undertaken.

Task 1: Project Management.

The UMD team coordinated closely with MDOT SHA throughout the project in order to assess the effects of higher GPR testing speed (Task 2) and validation and verification of the new data elements (Task 3). Quarterly progress reports were prepared and submitted. Participation in project meetings coordinated by MDOT SHA with MES/Starodub were attended for monitoring the overall GPR data collection, analysis, and module development under the MES/Starodub contract.

Task 2. Review & Assessment of Higher-Speed Protocols on SF-GPR Data Analysis

Up to 2018 the MDOT SHA data collection with SF-GPR was based on the common-offset transmitter-receiver pattern in the antenna array and with a sampling interval of approximately 1.5 inches. With 20 transmitter-receiver pairs, the speed of acquisition was about 10 mph. Under the MES/Starodub contract a new testing protocol was tested based on the common mid-point (CMP) synthetic aperture. The objective of the new testing protocol was to allow higher speed of data collection, thus reducing monitoring time and cost. The scope of the UMD task was to review and analyze the possibility of alternative data collection speeds. The analysis results are presented in Chapter 2 of this report.

Task 3. Review & Assessment of New Modules for SF-GPR Bridge Deck Analysis

The analysis methods and modules developed in Phase II involved a two-stage processing method for existing SF-GPR databases. The first stage produces individual reports for each bridge deck in a database. The second stage assembles a set of tables for all bridge decks. This information is used to establish the parameters required for estimating the bridge deck condition and eventually compare the results to existing indices established for the National Bridge Inventory (NBI) system. The current MDOT SHA standard operating procedures (SOPs) are based on a data collection protocol adopted in 2015. There are five distinct processes in the use of SF-GPR for bridge decks:

- 1. Data collection;
- 2. Computation of data elements for each bridge deck;
- 3. Development of reference metric to estimate each data element;
- 4. Definition of parameters for a ranking model for all bridge decks or for each type of bridge decks to assess state and level of deterioration; and,
- 5. Remediation matrix based on data elements and state and level of deterioration.

In Phase II work was undertaken to develop and implement the third and fourth processes. An example of ranking model using the NBI condition index of bridge deck was presented at the 2017 Transportation Research Board annual meeting (Gagarin et. al., 2017, 2019). The work under the separate MES/Starodub contract was to enhance the GPR analysis and deterioration

assessment of bridge decks by including additional elements of the thickness of HMA overlay and delamination assessment. The objective of the UMD task was to review and assess the updated 2019 SF-GPR data analysis pipeline which includes the new modules for HMA overlay and delamination assessment. Task 3 included the following subtasks:

3.1. Literature Review

The research team conducted a literature review on the state of practice with SF-GPR over the last three years to capture recent development in data analysis, related to HMA overlay and delamination. The Phase II GPR data analysis with data collected in 2016 using 2015 SOPs show that additional development was possible, using common mid-point (CMP) and multiple signal classification (MUSIC) algorithms.

3.2. Review of New Data Elements within the revised 2019 SF-GPR analysis pipeline. In this subtask, the research team in coordination with Starodub reviewed the revised 2019 SF-GPR analysis pipeline which included the new data modules.

Task 4: Final Report

The research team developed this final report that includes all deliverables and analyses as described in Tasks 2 and 3.

CHAPTER 2. REVIEW & ASSESSMENT OF HIGHER-SPEED PROTOCOLS ON SF-GPR DATA ANALYSIS

The objective was to assess whether the SF-GPR testing protocol allows for higher speed of data collection without significantly compromising data quality and interpretation. The speed of acquisition is a function of three parameters that control data acquisition for a given set of transmitter-receiver antenna pairs: the sampling distance interval between each scan; the dwell time for the duration of data collection; and, the time window for integration of the data received for each frequency step that establishes the frequency-step reported. The evolution of the MDOT SHA SF-GPR data collection protocol since 2015 are listed in Table 1.

Year	Number of Transmitter- Receiver Antenna Pairs	Dwell Time (µs)	Frequency Step (MHz)	Start Frequency (MHz)	End Frequency (MHz)	Sampling Distance Interval (in)	Deployment Period
2015	20	2	8	150	1998	1.53	2015-2016
2017	34	2	8	150	1998	1.84	2017
2018	24	1.5	8	150	1998	2.56	2018- Present

Table 1. SF-GPR settings for MDOT SHA data collection protocols

Criteria for Selection of Dwell Time and Time Window Levels

The 3D-GPR system can operate at different settings that impact the data acquisition speed. Two of the parameters used by 3D-GPR are the dwell time and the time window, as defined in its documentation:

"The integration time" is the time spent sending the entire frequency range for a single trace:

$$\tau = t_{dwell} N_{freq} = t_{dwell} BW / \Delta f$$
(1)

where t_{dwell} is the dwell time (the time spent on each frequency), N_{freq} is the number of distinct frequencies in a trace, BW is the total bandwidth and Δf is the frequency step. The frequency

step is not set directly. Instead there is a setting for "time window." The time window is defined as half of the range for a given frequency step, so the relationship becomes:

 $\tau = t_{dwell} t_{win} 2 BW \tag{2}$

where t_{win} is the time window.

Increased integration time will result in improved penetration and can be achieved by either increasing the dwell time or increasing the time window or a combination of both. However, in order to improve the efficiency of data collection, the lowest dwell time and time window values are established for a specific application that are sufficient to produce the quality and completeness of signals necessary for the analysis. For the application of concrete bridge decks, the region of activity for the GPR signals is between the surface and the bottom of the deck, across the width of the roadway from edge to edge of the curbs, and between the start and end of the bridge deck, at the expansion joints. The thickness of the deck varies from 7 to 15 inches. The rebar spacings for the top and bottom mats vary from 5 to 14 inches. The denser the steel the lower the quality of signals below the top mat. The concrete deck may have overlay (asphalt or concrete) that further disperse the power transmitted into the deck.

Control Parameter for Assessing Effects of Data Acquisition Speed

The current selection of 24 transmitter-receiver antenna pairs (Figure 1) is the minimum required to track the rebar across the width of the pavement and deploy three CMP bank approximately 18 inches apart. The data collected using a dwell time of 0.6 microseconds and a time window of 62.5 nanoseconds was selected for the 2019 GPR surveys since it was judged to be able to provide acceptable GPR signal quality. It was also concluded that any additional reduction in dwell time or time window causes losses in signal presence and strength that adversely impact layer tracking, rebar detection, rebar tracking, and CMP measurement estimates. Collecting data across the width of the roadway from curb to curb is an essential requirement for completeness of condition assessment. Thus, sampling distance interval is the only remaining parameter that can be varied beyond the changes from 1.53 inches in 2015 and 2016, to 1.84 inches in 2017, to 2.56 inches in 2018 and 2019.

Governing Algorithm for Assessing Effects of Data Acquisition Speed

There are over 100 algorithms in the MDOT SHA GPR data analysis that register, fuse, and analyze GPS, GPR, and distance measurement intervals following the Starodub modules. Distinct structural features in the GPR data are also registered with known boundaries on the bridge deck, for example, expansion joints or bridge piers. Among these algorithms, the most critical in terms of interpretation accuracy to an increase in sampling distance interval is the rebar detection algorithm. The next most sensitive algorithm is the expansion joint detection. Starting with the largest value deployed, the upper range is estimated approximately as one third of the rebar spacing. The rebar spacing rarely falls below 11 inches and thus the range of values of interest is between one to four inches. The corresponding range of speed is 10 to 20MPH. Starodub has reported in the Phase II analysis that without the use of the rebar detection algorithm there is no concern if speed is increased to 30MPH with a sampling distance interval close to six inches. It was also reported that the signal at smaller expansion joints at the abutments is degraded but still detectable. The relative position of the expansion joint is less accurate (resolution is approximately equal to half the sampling distance interval), however it was reported that is still better than the accuracy of absolute position estimated with GPS.

Effects of Data Acquisition Speed

With sampling distance interval as the primary control parameter, the top steel cover (TSC) and presence of Hot Mix Asphalt (HMA) or Latex Modified Concrete (LMC) overlay are two other data elements that could impact the success rate of detection and measurement of hyperbolas for each rebar. Elevation and condition are two additional surface parameters that are computed in the SF-GPR analysis that impact the detection regardless of sampling distance interval. For TSC which includes the thickness of overlays, the range observed so far has been one to three and a half inches. More than three quarters of all decks reviewed in three years have a TSC close to two and a half inches. Figure 2 is an example of a cross-section for the majority of the 219 bridge decks included in the 2018-2019 GPR surveys and assessed with the 2019 SF-GPR analysis pipeline. For the assessment of data acquisition speed TSC was selected at two and a half inches. With the presence of an overlay, the energy at the rebar is reduced. The impact is observed on the amplitude and some in the phase of the signal received. It is possible that less hyperbola

6

points are detected the further the antenna moves away from the rebar. The example presented herein is one with an asphalt (HMA) overlay, the worst-case scenario related to overlays. Finally, the diameter of the rebar is another parameter that affects the detection and data elements associated with the rebar. The shape of the hyperbola is affected as well by the strength of the signal received. The most common sizes of transverse rebar are #4, #5, and #6. In this case the bridge deck had #5 bars. The rebar detection algorithm first identifies the region of activity near the top rebar and fuses the detected hyperbolas in the two planar dimensions.

In order to demonstrate the impact of sampling distance interval on the detection of hyperbolas, random samples of data triggers were selected from the GPR database. Most samples have consistent signals with evenly spaced rebars as shown in Figure 3.

Receiver antennas

Figure 1. SF-GPR 24 transmitter-receiver antenna pairs

Figure 2. Cross-section of a typical bridge deck

Figure 3. Example B-scan profile of rebar detection (x-axis) versus time of propagation (y-axis) for a bridge deck with overlay

Note: twenty four #5 rebars spaced at 12", top steel cover of 2.5"

For comparative analysis a bridge deck with two sub-sections with distinct differences in condition, both in terms of spacing and top steel cover condition was selected and reported herein, Figure 4. The first third consists of four rebars spaced at 12 inches and the last two thirds has ten rebars with uneven smaller spacing, on average close to 6 inches. The last two thirds include defects between and near the top rebar, acting as a source of noise. As seen in Figure 4, all rebars were accurately detected at a sampling interval of dx=1.5" and all rebars were also detected at a sampling interval of dx=3.0" and within one-inch accuracy (Table 2). However, some rebars were not be detected at a sampling interval dx=4.5". Given that rebar is detected across antenna pairs by fusing the detection results from all data collection runs, the impact of the uncertainty of individual detection sets is reduced. The steel spacing maintains stability at dx=3.0" and degrades near dx=4.5." This result is consistent throughout the entire database.

Case	Sub-Section 1 – 4	rebars	Sub-Section 2 – 10 rebars			
	Detection	Match	Detection	Match		
dx = 3.0"	4 rebars	100%	10 rebars	100%		
dx = 4.5	4 rebars	100%	9 rebars	90%		

Table 2. Rebar detection in function of sampling interval dx.

dx = 3.0"

Figure 4. Rebar detection (red hyperbolas) matching ground truth conditions (green).

CHAPTER 3. REVIEW & ASSESSMENT OF NEW MODULES FOR SF-GPR BRIDGE DECK ANALYSIS

Literature Review

The research team conducted a literature review on the state of practice with GPR-SF over the last three years to capture any recent development in data analysis pertinent to HMA overlay and delamination, and the use of common mid-point (CMP) method. This review was to complement the knowledge after the extensive review that was conducted during the Phase II of the study (Goulias et al., 2014, Pailes et.al., 2013, Perkins et. al., 2000, Scott et. al., 2003 and 2015, Tinkey et. al., 2013).

A study by Zhao et. el., (2016) used extended CMP (XCMP) with SF-GPR to detect the dielectric properties and asphalt layer thickness. The configurations were based on the transmitting and receiving antennas that share the same midpoint (Table 3). The 3D-GPR antenna DX1821 (Figure 5) has a pattern, gain, and impedance nearly constant over a wide frequency range. The governing equations are based on geometry of configuration and they are not necessarily stable, meaning that a small perturbation in the inputs could have a huge influence on the outputs. Therefore, Whittaker-Shannon interpolation was applied to convert the data from frequency domain to time domain and increase the time domain sampling rate. Alternative XCMP patterns were used to identify which setup provides the most accurate GPR interpretation results in relation to measured asphalt layer thickness from design and cores. The study indicated that specific XCMP patterns provided accurate asphalt layer thickness detection within 0.2 inches (5 mm) accuracy which meets construction tolerance.

Figure 5. DX 1821 Antenna Array Layout and CXMP configurations (Zhao et.al., 2016).

	Plan 1	Plan 2	Plan 3	Plan 4	Plan 5
Configuration Distance between 1st Tx/Rx pair (m)	XCMP 1-3 0.446	XCMP 1-5 0.446	XCMP 1-7 0.446	XCMP 3-5 0.369	Standard 0.446
Distance between 2nd Tx/Rx pair (m)	0.369	0.578	0.685	0.578	-

Table 3. CXMP configurations (Zhao et.al., 2016).

A study by Zhao et. el., (2018) used multiple signal classification (MUSIC) algorithm to increase the resolution of 3D-GPR signals, such that thin asphalt overlay thickness can be accurately estimated. The XCMP method requires accurate determination of the peak location in the GPR signal which maybe challenging for thin asphalt concrete, AC, layers. Thus, to increase the resolution of the GPR signals alternative resolution techniques were proposed. A full-scale AC overlay section was built with design thickness ranging from 2 to 8 inches (50 to 200 mm). Steel plates were embedded in the pavement layers to increase the reflection amplitude. The proposed MUSIC algorithm was then applied to the XCMP signals. Signal preprocessing techniques including data cleaning and spatial smoothing were first performed to increase the signal to noise ratio (SNR). The predicted AC layer thicknesses were then compared with ground truth values from the overlay construction. While the regularization method's time delay estimation (TDE) may not always provide enough accuracy in precision when the XCMP method is used, the MUSIC algorithm increases the resolution of the GPR signals collected from thin AC overlays and achieve higher accuracy and precision. The maximum absolute AC layer thickness prediction error, when the MUSIC algorithm was applied, was 0.15 inch (4 mm).

A study by Ihamouten et. al. (2018) investigated the full-waveform inversion (FWFI) of SF-GPR radar waves (i.e., inversion in the frequency domain instead of inverse Fourier transform) to estimate the dielectric and geometric properties of tack coats in pavements. To achieve this the following steps were undertaken: develop a laboratory experimental study to assess the response of SF-GPR in various emulsions and thicknesses (dielectric and geometric characterization); validate results with numerical modeling; and, develop SF-GPR data processing algorithms to link dielectric characteristics with emulsion quantities for various specimens. Following these

12

initial steps, several two-layer slabs were designed, with variable emulsion quantities, thicknesses and compaction. The result showed that the presence of emulsion at the interface decreased the wave propagation velocity. The emulsion quantity had an influence on the estimated layer thicknesses. Overall, the results of this preliminary research work prove that the FWFI approach is suitable for describing wave propagation through multi-layered media since there is a correlation between dielectric susceptibility and emulsion quantity.

Review of Revised SF-GPR Analysis Pipeline incorporating New Data Elements

In this task the research team in coordination with Starodub reviewed the revised SF-GPR analysis pipeline which incorporates the new data modules: (i) thickness and condition of the HMA overlay and (ii) delamination potential. Figure 6 is an example of a profile radagram of a three-span bridge. The extent of areas of activity are color-coded. The abutments and piers are shown in blue, the overlay-concrete interface in red, the top steel in green, and the bottom steel in orange. Each data element is generated using several GPR interpretation algorithms involving dimensional filters, detection and fusion algorithms. The revised SF-GPR analysis pipeline is presented in Figure 7. Details of its components were included in the Phase II report (Goulias 2016) based on the initial SF-GPR analysis pipeline. The final summary report for each bridge deck, by span, and for all spans is shown in Figure 8. The summary report includes two types of data elements: (a) bridge deck information data, and, (b) bridge deck condition data. Appendix A presents the latest version of the data analysis modules, with details on how each bridge deck condition parameter is detected using the SF-GPR data. It specifically includes:

- GPR Inputs;
- Bridge deck condition parameters
 - Concrete Surface Condition (SC)
 - o Surface Elevation (SE)
 - Overlay Thickness (OT)
 - Overlay Condition (OC)
 - Top Steel Cover (TC)
 - o Above Steel Condition (ASC)
 - Top Steel Condition (TSC)

- Below Steel Condition (BSC)
- o Deck Thickness (DT)
- o Bottom Steel Cover (BC)
- Percent Deficient & Fuzzy Sets for Defining Condition Membership Functions;
- Fuzzy-Set Model.

Above Steel Condition (ASC), Top Steel Condition (TSC) and Below Steel Condition (BSC) are pertinent to delamination detection while the analysis modules pertinent to the thickness and condition of the HMA overlay are Overlay Thickness (OT) and Overlay Condition (OC).

Figure 6. Example Profile View (B-scan) of three-span bridge deck.

<u>Mode:</u>		Semi- Automated		Semi- Automated	Automated	Semi- Automated	Automated	Automated	Automated	Automated	Automated	Automated	Automated	Automated	Automated	Automated	Automated	Manual	Manual	Manual
<u>Status:</u>	Method:	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed
	Coding:	Completed	Completed	Completed	Completed	Completed	Completed	Completed	In-Progress	In-Progress	In-Progress	In-Progress	In-Progress	In-Progress	Completed	In-Progress	In-Progress	In-Progress	In-Progress	In-Progress
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	<u>Analysis</u> Module:	Project Management	Type of Project	Organization by Project	ac/aA	Delineation of Spans	Feature Analysis	Defect Analysis	Surface Analysis	Overlay Analysis	Top Rebar Analysis	Bottom Rebar Analysis	Bottom of Deck Analysis	SP/PR Analysis	Executive Summary	Assembly of Report	Deck Element Scores	00S Summary Page	00S Summary Table	OOS Season Review
Files and Information		KML information	/Large structure le/Multi Design ecial Project	n groups of 3dra, geotiff, KML, and Plans	stration of Data	n of Results into spans vreas of Interest	ction and Classification	ction of Defects	Surface Elevation	Overlay Thickness	Set 4*: Top Rebar Cov er Depth	Set 9*: Bottom Rebar Cover	kness	Post-Processing tion of registration	page of GPR Report ssment of Registration	ort	Ranking of Decks ane/Shoulder	r Front page and Scores	Data Elements s	ssing of previous Seasons, and bles. Executive summary of s.
<u>Input</u> : All Data	Output:	n of 3dra, geotiff, with	Small Singl	CPL control file with	Regi	Segmentatio and ⊿	Feature Dete	Detec	Set 1*:	Set 7*;0	Set 5*: Top Rebar Spacing	Set 10*: Bottom Rebar Spacing	Set 3*: Deck-Slab thic	SP/PR Verifica	lary tables and Front sults into a final asse	Project GPR Repo	id Overall Scores for l icture, by Span, by La	et Summary tables for bination of Statistics	Summary Tables of L and Deck Rating:	el , Retroactive proces Season Summary Ta Content of Result
		Registratio	Appendix C	Appendix B	Appendix A: QC/QA	Bridge information for front page	Layer Segmentation	Defect List/ Classification	Set 2*: Near-Surface indicator	Set 8*: Overlay condition indicator	Set 6*: Near Top- Rebar condition indicator	Set 11*: Near Bottom- Rebar condition indicator		Statistics for Scores for selection of data elements	Project Summ Fusion of All Re		Element ar by Stru	Projec Coml	Season	Review of Ranking Mod updating of previous
												J		·1			∗र्ग्•			

*Note: Each set comprises three types of plots and tabulation of results by span

Figure 7. 2019 SF-GPR Analyses Pipeline

OFFICE OF STRUCTURES OFFICE OF STRUCTURES GROUND PENETRATING RADAR FOR BRIDGE DECKS										
	Bri	dge Data Inf	ormation Sł	neet						
Date of Last GPR Survey: Bridge Number: 2 Location: District: Feature Ca Feature Int	12/ 303300 Sub-1 1 rried: ærsected:	/3/2018 Structure: County:	Worcester Co 'MI 'NORFOLK	- bunty D 90 ' SOUTHERN RR	Span: S	3				
General Bridge Deck Data Number of Spans:	<u>a</u> : 3	Total Length:	51.0	<i>ft</i> Total	Area: 2244	sf				
Bridge Deck Surface:	✓ Bare Concr	ete HMA		Othe	r, specify					
Data Element	Average	Min	imum	Maximum	Per Plan					
Deck Thickness (DT)	7.97	7.	.43	8.41	8					
Overlay Thickness (OT)	-		-	-	-					
Top Steel Cover (TC)	2.33	0.	.71	5.34	2					
Top Steel Spacing (TS)	7.55	4.	.34	9.83	10					
Bottom Steel Cover (BC)	-		-	-	-					
Bridge Deck Condition Da	ata									
Bridge Deck Condition D	ata Previous G	SPR Report	Last GF	PR Report						
Bridge Deck Condition Da	ata Previous C Date:	SPR Report	Last GF Time Elapsed:	PR Report	Note/					
Bridge Deck Condition Da Data Element	ata Previous C Date: Percent	SPR Report - Condition	Last GF Time Elapsed: Percent	PR Report - Condition	Note/ Recommendatio	n				
Bridge Deck Condition Da Data Element	ata Previous C Date: Percent Deficient*	PR Report - Condition Rating**	Last GF Time Elapsed: Percent Deficient*	PR Report - Condition Rating**	Note/ Recommendatio	n				
Bridge Deck Condition Data Data Element Surface Elevation (SE)	Previous C Date: Percent Deficient*	PR Report - Condition Rating** N/A	Last GF Time Elapsed: Percent Deficient* 45	R Report - Condition Rating** Marginal	Note/ Recommendatio	n				
Bridge Deck Condition Data Data Element Surface Elevation (SE) Surface Condition (SC)	Previous C Date: Percent Deficient*	PR Report - Condition Rating** N/A N/A	Last GF Time Elapsed: Percent Deficient* 45 16	R Report - Condition Rating** Marginal Acceptable	Note/ Recommendatio	n				
Bridge Deck Condition Data Data Element Surface Elevation (SE) Surface Condition (SC) Overlay Condition (OC)	Previous C Date: Percent Deficient* - - -	PR Report - Condition Rating** N/A N/A N/A	Last GF Time Elapsed: Percent Deficient* 45 16 -	R Report - Condition Rating** Marginal Acceptable N/A	Note/ Recommendatio	n				
Bridge Deck Condition Data Data Element Surface Elevation (SE) Surface Condition (SC) Overlay Condition (OC) Above Top Steel (ASC)	ata Previous C Date: Percent Deficient* - - - - -	FPR Report - Condition Rating** N/A N/A N/A N/A N/A	Last GF Time Elapsed: Percent Deficient* 45 16 - 13	R Report - Condition Rating** Marginal Acceptable N/A Very Good	Note/ Recommendatio	n				
Bridge Deck Condition Data Data Element Surface Elevation (SE) Surface Condition (SC) Overlay Condition (OC) Above Top Steel (ASC) Top Steel Condition (TSC)	ata Previous C Date: Percent Deficient* - - - - - -	FPR Report - Condition Rating** N/A N/A N/A N/A N/A N/A N/A N/A	Last GF Time Elapsed: Percent Deficient* 45 16 - 13 2	R Report Condition Rating** Marginal Acceptable N/A Very Good Very Good	Note/ Recommendatio	n				
Bridge Deck Condition Dr Data Element Surface Elevation (SE) Surface Condition (SC) Overlay Condition (OC) Above Top Steel (ASC) Top Steel Condition (TSC) Below Top Steel (BSC)	ata Previous G Date: Percent Deficient* - - - - - - - - - - - - -	PR Report - Condition Rating** N/A N/A N/A N/A N/A N/A N/A	Last GF Time Elapsed: Percent Deficient* 45 16 - 13 2 2	R Report Condition Rating** Marginal Acceptable N/A Very Good Very Good	Note/ Recommendatio	n				
Bridge Deck Condition Dr Data Element Surface Elevation (SE) Surface Condition (SC) Overlay Condition (OC) Above Top Steel (ASC) Top Steel Condition (TSC) Below Top Steel (BSC) Overall Score (1-9) ***	ata Previous G Date: Percent Deficient* - - - - - - - - - - - - -	PR Report - Condition Rating** N/A N/A N/A N/A N/A N/A N/A	Last GF Time Elapsed: Percent Deficient* 45 16 - 13 2 2	R Report - Condition Rating** Marginal Acceptable N/A Very Good Very Good Very Good	Note/ Recommendatio	n				
Bridge Deck Condition D Data Element Surface Elevation (SE) Surface Condition (SC) Overlay Condition (OC) Above Top Steel (ASC) Top Steel Condition (TSC) Below Top Steel (BSC) Overall Score (1-9) *** Overall State (1-4) *** **Condition *** Overall State (1-4) ***	ata Previous C Date: Percent Deficient*	GPR Report - Condition Rating** N/A N/A N/A N/A N/A N/A N/A N/A	Last GF Time Elapsed: Percent Deficient* 45 16 - 13 2 2 2 litions for each data ficient using the foll Acceptable	R Report Condition Rating** Marginal Acceptable N/A Very Good Very Good Very Good Condent Acceptable N/A Very Good Very Good Very Good Very Good Very Good Condition Marginal Marginal Marginal	Note/ Recommendatio	n				
Bridge Deck Condition Dr Data Element Surface Elevation (SE) Surface Condition (SC) Overlay Condition (OC) Above Top Steel (ASC) Top Steel Condition (TSC) Below Top Steel (BSC) Overall Score (1-9) *** Overall State (1-4) *** *Percent De **Condition Coverall State (1-4) ***	ata Previous C Date: Percent Deficient*	PR Report - Condition Rating** N/A N/A N/A N/A N/A N/A N/A N/A	Last GF Time Elapsed: Percent Deficient* 45 16 - 13 2 2 2 itions for each data ficient using the foll Acceptable bbination of data ele	R Report Condition Rating** Marginal Acceptable N/A Very Good Very Good Very Good Cery Good Very Good Mery Good Marginal Marginal Marginal Marginal	Note/ Recommendatio	n				

Figure 8. Example of GPR summary page

Bridge Deck Condition Assessment Model (BDCAM)

The bridge deck condition assessment model (BDCAM) estimates the deck condition and condition state using the SF-GPR data elements estimated using the 2019 SF-GPR analysis pipeline presented in Figure 7. Deck condition is defined based on a fuzzy model of the various levels of defect and deterioration of the deck. Figures 9 and 10 present the processing levels hierarchy and corresponding data analysis elements in the BDCAM model. Level 1 estimates the condition near the surface (Surface Condition), in the cover (Cover Condition), and near the top mat of steel (Rebar Condition). Level 2 combines cover and rebar conditions to estimate the Structural Condition. Finally, surface and structural condition are input to the estimate of deck condition and condition state, Level 3. For this first version of the BDCAM model, the weight of each input is equal.

The fuzzy-sets for a selection of data elements are input in a fuzzy model to compute higher-level data elements that summarize the information captured by the GPR data. The proposed fuzzy model is under review by the MDOT SHA Office of Structures, briefly described in Appendix A. Below is a list of associations of measured data elements to produce an estimate of an overall score for the condition of the deck using GPR data in two forms of presentation. First the levels of association are listed, Figure 9, and second, the hierarchy of data elements up to the overall scores are presented, Figure 10. The details of the analysis modulus are described in Appendix A as well.

Level 1: Surface Condition [SC] & Surface Elevation [SE] \rightarrow SURFACE CONDITION Top Steel Cover [TC], Above Steel Condition [ASC] & if applicable, Overlay Condition [OC] \rightarrow COVER CONDITION Top Steel Condition [TSC] & Below Steel Condition [BSC] \rightarrow REBAR CONDITION

Level 2: COVER CONDITION & REBAR CONDITION → STRUCTURAL CONDITION

Level 3:

SURFACE CONDITION & STRUCTURAL CONDITION \rightarrow Overall Scores

Figure 9. Processing levels in BDCAM model

Figure 10. Hierarchy and correspondence of GPR data elements in BDCAM model

Ground Truth Conditions and the National Bridge Inventory (NBI)

The scope of the initial "ground truth" assessment includes deck rating and condition state, CS, data from the Long-Term Bridge Performance (LTBP) database. Significant verification work has been completed by the states and Federal Highway Administration (FHWA) on such data. Figure 11 presents an overview of the LTBP database and condition definitions used. There are 2,552 MDOT SHA bridge entries into the database. Figure 12 presents an example of the bridge deck condition state data for Maryland.

From the 2018 and 2019 SF-GPR database collected by MES about 219 bridge decks have been analyzed with the revised 2019 SF-GPR analysis pipeline. These represent bridge decks where: the same equipment (GPR, GPS, DMI) was used; antenna was at the right height from the bridge deck surface throughout the entire data collection time; surveys were collected with appropriate protocol and data collection speed. The LTBP database query for the 219 Maryland bridge decks analyzed with the revised 2019 SF-GPR analysis pipeline provided the following results: from the 197 bridges

corresponding to 219 bridge decks, three bridge decks are missing information, and all have concrete surface except 62 of them with HMA overlay and 13 with LMC overlay.

Figure 13 presents a histogram of the deck conditions for all the 219 bridge decks according to the BDCAM analysis. The condition of all the bridge deck spans (853 spans for the 219 bridge decks) was used for comparing the BDCAM with the NBI deck condition and condition state (Figure 14). The results are tabulated in Table 4 per bridge deck and per span entry. The BDCAM estimates agree with the NBI values reported as of August 2019 for 90.9% of the 219 decks within two levels of the condition scale. Based on feedback with inspectors and bridge engineers, it is well accepted that the reported NBI deck condition values can be within two levels of the scale from the actual condition of the deck. Also, the final BDCAM model settings will be based on the values defined by bridge engineers based on all decks in the GPR database. The current settings in the BDCAM model reflects equal weights of the relative importance of defects and deterioration near the surface, within the top steel cover, near the top mat of rebar, and below the top mat of rebar. Such settings could be adjusted by MDOT SHA structural engineers to better represent the importance of each parameter on the overall bridge deck condition and rating.

Table 4. Percent true, false positive, false negative for deck and span conditions, for three tolerance levels

0			
Tolerance	% False Positive	% True	% False Negative
Within 1 NBI rating	3.2	62.1	34.7
Within 2 NBI rating	0.5	90.9	8.6
Within 3 NBI rating	0	96.8	3.2
Span Entries (853)			
Tolerance	% False Positive	% True	% False Negative
Within 1 NBI rating	4.1	60.7	35.2
Within 2 NBI rating	0.7	90.9	8.4
Within 3 NBI rating	0	97.2	2.8

Bridge Decks (219)

SPECIFICATION FOR THE NATIONAL BRIDGE INVENTORY BRIDGE ELEMENTS

Number of SHA entries = 2,552 MDSHA bridges

Timber Masonry

31

54

Record 0

State codes a

Standard Code

ine

ryland

24

Arizona

4

eported

Other

60

65

Figure 11. Source of information and definitions for initial ground truth

1	A	В	С	D	E	F	G	н	1
1	STATE 💌	STRUCNUM	r EN 🖵	TOTALQTY 💌	CS1 💌	CS2 💌	CS3 💌	CS4 💌	EPN 💌
2	24	100000010001010	12	4353	4343	10	0	0	
3	24	100000010004010	12	4269	4259	10	0	0	
4	24	100000010059010	12	6350	6340	10	0	0	
5	24	100000010060010	12	118440	65945	52495	0	0	
6	24	100000010061010	12	2833	2733	100	0	0	
7	24	100000010072010	12	922	922	0	0	0	
8	24	100000010077013	12	18674	18664	10	0	0	
9	24	100000010077014	12	14050	14050	0	0	0	
10	24	100000010087010	12	22205	22165	40	0	0	
	24	100000010000010	10	07040	07100	100			

Figure 12. Condition state data Note: Maryland= 24; Superstructure =12; Condition State 1 = CS1.

Figure 13. Bridge Deck Condition from BDCAM analysis, 219 bridge decks

Figure 14. Comparison of BDCAM and NBI Ground Truth for deck condition & condition state.

Review of Bridge Deck State Inspection Reports with NBI and BDCAM

Eight bridges were identified with bridge deck inspection reports and were surveyed with SF-GPR and analyzed with the 2019 SF-GPR analysis pipeline. The details of the bridge deck locations and BDCAM analyses results, as well as the state inspection reports, are included in Appendices B and C. Based on the review of the inspection reports the content of information varies from bridge to bridge and the time elapsed since the reports were prepared ranges from August 2013 to April 2017. Three of the eight inspection reports are approximately 2.5 years old, and five inspections more than five years old. Some inspections were limited to abutments and substructure. Bridge deck inspection reports have a map of the core locations and pictures of the bore holes with results of chloride testing. A percentage

of sound concrete was reported for the inspection component. The inspection reports do show some level of deterioration of the deck components consistent with the deck condition ratings from both the BDCAM and NBI databases. Tables 5 and 6 provide the NBI and BDCAM condition states, while the location and scope, the general information and the detailed condition assessment from the BDCAM GPR analyses are included in Appendix B. The review of the condition ratings, Table 5, shows consistent results except for bridge 2108500. The BDCAM estimate for this deck condition is 6 and the NBI deck condition is 4 or poor. The BDCAM estimate would be classified as a false negative, fair (6) instead of poor (4) since its estimate is lower than the NBI value. The BDCAM and NBI values of all other bridges are equal or within one condition rating of each other, all in the fair condition range.

Bridge Number	Processing Batch	District	Bridge Rating	Length	Square Footage	NBI	BDCAM		Year repaired
0700300	G12	District_2	Fair	86	11,033	5	6	1933	-
1701102	G12	District_2	Fair	52	5,883	5	5	1967	-
1701202	G12	District_2	Fair	52	3,899	6	6	1967	-
1701302	G12	District_2	Fair	52	6,421	6	7	1967	-
2108500	F	District_6	Poor	54	5,229	4	6	1965	-
2202100	G11	District_1	Fair	47	8,991	5	6	1972	-
2202401	G11	District_1	Fair	45	6,063	5	5	1974	2017
2202402	G11	District_1	Fair	45	6,148	6	5	1974	-

 Table 5. NBI and BDCAM Bridge Deck Condition Rating for Bridges with inspection reports

Note: NBI (Deck 58); BDCAM (Super 59)

Table 6. Condition State Data for Bridge with Inspection Reports

Bridge Number	Processing Batch	District	Total Number	CS1	CS2	CS3	CS4
0700300	G12	District_2	11036	0	10030	1006	0
1701102	G12	District_2	5716	3031	2664	21	0
1701202	G12	District_2	3906	1756	2148	2	0
1701302	G12	District_2	6426	5496	885	45	0
2108500	F	District_6	-61828	-61828	-61828	-61828	-61828
2202100	G11	District_1	6611	4965	1322	324	0
2202401	G11	District_1	6106	6106	0	0	0
2202402	G11	District_1	3139	524	1487	1128	0

CHAPTER 4. SUMMARY & CONCLUSIONS

The development of analysis modules for delamination and HMA overlay were incorporated in the 2019 SF-GPR analysis pipeline. The BDCAM model estimates agree with the NBI values for 90.9% of the 219 bridge decks analyzed within two levels of the condition scale. The current settings in the BDCAM model reflects equal weights of the relative importance of defects and deterioration near the surface, within the top steel cover, near the top mat of rebar, and below the top mat of rebar. Thus, such settings could be adjusted to reflect Maryland conditions for all or specific bridge deck types improving accuracy of prediction. The comparison of BDCAM analysis with state inspection deck reports for eight bridges provided consistent conclusions for seven out of the eight cases, all in the "fair" category.

Until 2018 the MDOT SHA SF-GPR data collection was based on the common-offset transmitterreceiver pattern in the antenna array, with a sampling interval of approximately 1.5 inches. With 20 transmitter-receiver pairs, the speed of acquisition was about 10 mph. In 2019 a new testing protocol was adopted based on the CMP synthetic aperture. The data acquisition speed for the 2019 data collection protocol is 10 mph for all conditions with a dx=2.5". The analysis presented in Chapter 2 indicated that sampling interval up to dx=3.0" provides accurate steel rebar detections, representing the governing algorithm in SF-GPR analysis for bridge deck applications. This is also true when an HMA overlay is present on the bridge deck. With a dx=3.0" data collection speed can be increased to 13 mph. Beyond that signal degrades affecting detection accuracy of steel spacing.

FUTURE WORK

The current settings in the BDCAM model reflect equal weights of the relative importance of defects and deterioration near the surface, within the top steel cover, near the top mat of rebar, and below the top mat of rebar. The weights could be adjusted to better represent the importance of each parameter on the overall bridge deck condition. The relative importance of such condition parameters should be defined once all bridge decks in the MDOT SHA SF-GPR database are analyzed with the 2019 SF-GPR analysis pipeline.

The percent coverage, the equipment, and operator errors impact the consistency of the results. Percent coverage in the SF-GPR database varied from 20 to 100 percent, and there were changes in equipment in the 2017 to 2019 seasons. Operator discrepancies such as starting collection late, ending collection too soon, lowering antenna late, or lowering antenna partially have an impact on GPR data. The impact of such effects should be examined in the future work and proper operator training modules should be developed.

Currently the data acquisition speed for the 2019 GPR data collection protocol is 10 mph for all conditions (with a dx=2.5"). The surface roughness is one of the limiting factors for speed of data acquisition. The smoother the surface of the deck, the faster the speed. The data acquisition speed of 10 mph is acceptable for all roughness conditions. The adoption of any higher data collection speeds needs to be further examined considering the following practical recommendations:

- a. Driving lanes with low surface roughness (IRI \leq 100): If two CMP banks (3' sampling laterally) are used instead of three (2' laterally), the data acquisition speed can be increased to 12 mph. If dwell time is reduced to 1.0 µs from 1.5 µs, the data acquisition speed can be increased to 15 mph. If sampling distance interval is increased to 3.25" from 2.5", the data acquisition speed can be increased to 13 mph. If some loss of accuracy in rebar detection is acceptable, a data acquisition speed of 30 mph is possible.
- b. Driving lanes with higher surface roughness (IRI > 100): Since surface roughness is a limiting factor, the operator should slow down to 5 mph or less for bumps and potholes on the deck.
- c. Shoulders (median and outer): the data acquisition speed is always limited to 10 mph due to potential debris and anomalies on pavement surface. For data collection runs near curbs a reduced speed to 5 mph or less is recommended.

REFERENCES

- Al-Qadi, I.L., Lahouar, S., "Part 4: Portland Cement Concrete Pavement: Measuring Rebar Cover Depth in Rigid Pavements With Ground Penetrating Radar," Transportation Research Record: Journal of the Transportation Research Board, 2005, pp. 81-85.
- Gagarin N., Makemson J., Goulias D., Cutts R., and Andrews J. "Condition Assessing of Concrete Bridge Decks Using Step-Frequency Ground Penetration Radar." 2017 Transportation Research Board Annaul Meeting, January 2017.
- Gagarin N., Goulias D., Makemson J., Cutts R., and Andrews J. "Development of Novel Methodology for Assessing Bridge Deck Conditions Using Step Frequency Antenna Array Ground Penetration Radar." *Journal of Performance of Construction Facilities*, ASCE, December 2019. DOI: 10.1061/(ASCE)CF.1943-5509.0001365.
- Goulias D., and Scott M. "Effective Implementation of Ground Penetrating Radar (GPR) for Condition Assessment & Monitoring of Critical Infrastructure Components of Bridges and Highways." Maryland SHA, Hanover, MD, 2014.
- Goulias D., "Effective Implementation of Ground Penetrating Radar (GPR) for Condition Assessment & Monitoring." Maryland SHA, Hanover, MD, 2016.
- Ihamouten A., Bosc A., Guan, B., Le Bastard C., Fauchard C., Lambot S., and Dérobert X. "Fullwaveform inversion using a stepped-frequency GPR to characterize the tack coat in hot-mix asphalt (HMA) layers of flexible pavements." NDE &E International, 95:17-25, 2018. https://doi.org/10.1016/j.ndteint.2017.12.006
- Pailes, B.M., Gucunski, N., Brown, M., "Correlation of Non-destructive Testing Results to Improve Assessment of Corrosion and Corrosion Damage of a Reinforced Concrete Deck," Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, D.C., January 13-17, 2013.
- Perkins, A.D., Amrol, J.J., Romero, F.A., Roberts, R.L., "DOT Specification Development Based on Evaluation of Ground-Penetrating Radar System Performance in Measuring Concrete Cover (Reinforcement Depth) on New Bridge Deck Construction," Structural Materials Technology

IV: an NDT Conference, Editor: Sreenivas Alampalli, New York State Dept. of Transportation, March 2000, pp. 53-60.

- Scott, M., Rezaizadeh, A., Delahaza, A., Santos, C.G., Moore, M., Graybeal, B., Washer, G., "A Comparison of Nondestructive Evaluation Methods for Bridge Deck Assessment," Nondestructive Testing and Evaluation International, Vol. 36, 2003, pp. 245-255.
- Scott M., and Goulias D."Quantitative Bridge Deck Evaluation Using Emerging Ground Penetrating Radar Data Collection and Analysis." 16th European Bridge Conference and Exhibition. Edinburg, UK, June 25, 2015.
- Tinkey, Y., Miller, P., Leonard, M., Pott, A., Olson, L., "Bridge Deck Scanning for Condition Assessments of Bare Concrete and Asphalt Overlaid Decks," Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, D.C., January 13-17, 2013.
- Zhao S., and Al-Qadi I. "Development of an analytic approach utilizing the extended common midpoint method to estimate asphalt pavement thickness with 3-D ground-penetrating radar." NDE &E International, 78: 29-36, 2016. DOI: https://doi.org/10.1016/j.ndteint.2015.11.005
- Zhao S., and Al-Qadi I. "Super-Resolution of 3-D GPR Signals to Estimate Thin Asphalt Overlay Thickness Using the XCMP Method." IEEE Transactions on Geoscience and Remote Sensing PP(99):1-9 · August 2018. DOI: 10.1109/TGRS.2018.2862627

APPENDIX A

2019 SF-GPR ANALYSIS MODULES (BDCAM)

Revised 6 December 2019 GPR Information Overview

1. GPR Input

Region of activity in GPR data is between the surface and the bottom of the deck as shown in the profile views below.

Features along distance travelled

2. Data Elements Reported near GPR Features

- a) *Pavement Surface*: Surface Condition [1] (Near Surface Dielectric Permittivity) and Surface Elevation [2]
- b) *Overlay-Concrete Deck Interface*: Overlay Thickness [3], and Overlay Condition [4] (Indication of Defect and/or Debonding)
- c) Top Steel Mat: Top Steel Cover [5], Top Steel Condition [6] (Indication of Delamination)
- d) Bottom Steel Mat: Bottom Steel Cover [7]
- e) Bottom of Deck: Deck Thickness [8]
- 3. Data Elements Available: Rebar Spacing [9]
- **4.** Data Elements under development: Indication of Corrosion of Top Steel [10], Vertical Cracking [11], Bottom Steel Condition [12]
- 5. Percent Deficient and Fuzzy Sets

A Reference Distribution and Range for is established for each data element (see figure). It represents the best condition of a new deck as close to the condition free of defects and deterioration. For a given set of measurement, the percent area that falls outside the reference is estimated. The larger the area, the greater

the potential for deterioration. Membership functions are defined to represent the increasing change from the reference captured in the percent deficient. For the data element shown in the figure above, there are five fuzzy sets that represent "very good", "good", "acceptable", "marginal", and "poor" ratings.

6. Fuzzy-Set Model (Revision 2)

The fuzzy-sets for a selection of measured data elements are input in a fuzzy model to compute higher-level data elements that summarize the information captured by the GPR data. A proposed fuzzy model is under development with the participation of the Office of Structure. Below is a list of associations of measured data elements to produce an estimate of an overall score for the condition of the deck using GPR data in two forms of presentation. First the levels of association are listed, and second, the hierarchy of data elements up to the overall scores are presented.

Level 1:

Surface Condition [SC] & Surface Elevation [SE] \rightarrow SURFACE CONDITION

Top Steel Cover [TC], Above Steel Condition [A	SC] &
if applicable, Overlay Condition [OC]	→ COVER CONDITION
Top Steel Condition [TSC] &	
Below Steel Condition [BSC]	→ REBAR CONDITION

Level 2:

COVER CONDITION & REBAR CONDITION → STRUCTURAL CONDITION

Level 3:

SURFACE CONDITION & STRUCTURAL CONDITION \rightarrow Overall Scores

7. GPR Information Details

A one-page document is provided for each measured data element below. Note that the data elements included were prepared using the 2017, 2018, and 2019 MDSHA GPR database.

Revised 1 December 2019 GPR Information Details [1] Concrete Surface Condition (SC) Definition

The surface condition is an estimate of the variance in material consistency near the surface of the deck using the near surface dielectric permittivity measured by the GPR sensor.

Element Rating

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

Very Good: The material near the surface is homogeneous and comparable to the condition of a new deck.

Good: A small percentage of measurements indicate a deviation from the condition of a new deck. There is no concern about exposure of the top steel mat to moisture and corrosive chemical agents. There is no impact on the ride quality over the deck.

Acceptable: A greater percentage of measurements indicate a deviation from the condition of a new deck. There is a minimal potential for some exposure of the top steel mat to moisture and corrosive chemical agents. There is some minor loss of ride quality over the deck.

Marginal: There is an increased risk of exposure of the top steel mat to moisture and corrosive chemical agents. Recommend review of condition of top steel mat for indication of deterioration. There is an impact on the ride quality over the deck.

Poor: The material near the surface is heterogeneous most likely due to significant surface defects. This is an indication of variance in material quality, including density, voids, and/or cracking. There is a significant loss of ride quality over the deck. Check condition of top steel mat for potential indication of corrosion, delamination, and initiated vertical cracking. May require repair/remedial action.

<u>Example</u>

<u>Technical</u>

The surface condition is measured using estimates of near surface dielectric permittivity. It is a function of the amplitude of the first surface reflection in the GPR data and a reference amplitude of the first surface reflection over a metal plate.

Revised 1 December 2019 GPR Information Details [2] Surface Elevation (SE) Definition

The surface elevation is an estimate of the vertical deviation from the surface of the deck in inches or centimeters. Depressions (e.g. potholes, cracks) have negative surface elevations, and protrusions (e.g. bumps, overfilled patches) positive.

Element Rating

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

Very Good: There are no measured defects in the surface profile. The surface profile is homogeneous and comparable to the condition of a new deck.

Good: A small percentage of measurements indicate a deviation from the condition of a new deck. There is no impact on the ride quality over the deck.

Acceptable: A greater percentage of measurements indicate a deviation from the condition of a new deck. There is some loss of ride quality over the deck. There is a potential risk of exposure of the top steel mat to moisture and corrosive chemical agents.

Marginal: There is a noticeable adverse impact on the ride quality over the deck. Recommend review of condition of top steel mat for indication of deterioration. May require repair/remedial action.

Poor: There are significant surface defects due to potholes and patches. There is a significant loss of ride quality over the deck. Check condition of top steel mat for potential indication of corrosion, delamination, and initiated vertical cracking. Requires repair/remedial action.

Example

<u>Technical</u>

The vertical distance between the GPR antenna and the surface of the deck is estimated using the first surface reflection. The estimates are calibrated using the common-mid-point method. The surface elevation is computed as a reference height of the GPR antenna with respect to the surface of the deck minus the calibrated vertical distances. Bumps have a positive surface elevation and potholes negative.

Revised 1 December 2019 GPR Information Details [3] Overlay Thickness (OT) – UNDER REVIEW Definition

If there is an HMA or concrete overlay detected during the pre-processing of the GPR data, its thickness is estimated between the surface and the overlay/concrete-deck interface feature in the GPR measurement. The overlay thickness is reported in inches.

<u>Element</u>

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

<u>Example</u>

Pavement Surface

Overlay-Concrete Deck Interface

Top Steel Mat

<u>Technical</u>

The thickness of the overlay is estimated as the vertical distance between the surface and the overlay/concrete-deck interface. The estimates of thickness are calibrated using the commonmid-point (CMP) method based on geometric triangulation. The figure on the left shows five lateral offsets of five different transmitterreceiver pairs. Note that all five lines cross at a common-mid-point. The distance D2 is estimated using the five measurements, knowing the five lateral offsets. The thickness of the overlay is D2-D1, where D1 is estimated using a similar triangulation.

Revised 1 December 2019 GPR Information Details [4] Overlay Condition (OC) – UNDER REVIEW Definition

If there is an HMA or concrete overlay detected during the pre-processing of the GPR data, its condition is estimated using the dielectric permittivity near the overlay/concrete-deck interface feature in the GPR measurement and the signal strength of the GPR reflection at the interface. The overlay condition is a dimensionless parameter ranging from 1 (best) to 10 (worst).

Element Rating

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

Very Good: The condition of the overlay is homogeneous and comparable to a new deck in very good condition.

Good: A small percentage of condition of the overlay indicate a deviation from the reference range. There is no apparent defect in the overlay of the deck.

Acceptable: A greater percentage of measurements indicate a deviation from the design thickness of the overlay. There may be some minor defect in the overlay of the deck.

Marginal: Recommend review of surface elevation for evidence of depression/potholes, potentially due to deterioration of the overlay due to debonding or surface damage. Also review the overlay condition for evidence of defects and indication of debonding at the interface between the overlay and the top of concrete deck.

Poor: A greater percentage of measurements indicate a deviation from reference range. Check surface elevation for evidence of depression/potholes. Also check the overlay condition for evidence of defects and indication of debonding at the interface between the overlay/concrete-deck interface. May require repair/remedial action.

Example: Defect in Overlay Layer

<u>Technical</u>

The condition of the overlay is estimated using an estimate of the dielectric permittivity and signal strength of the GPR reflection at/near the overlay/concrete-deck interface. The estimates are computed and calibrated using the common-mid-point method.

Revised 1 December 2019 GPR Information Details [5] Top Steel Cover (TC) Definition

The top steel cover is estimated between the surface and the top steel mat features in the GPR measurement. The top steel cover is reported in inches.

<u>Element</u>

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

<u>Example</u>

The top steel cover is estimated as the vertical distance between the surface and the top-steel mat interfaces. The estimates are computed and calibrated using the common-mid-point method. See

Revised 1 December 2019 GPR Information Details [6] Above Steel Condition (TSC) Definition

The top steel condition is estimated using the dielectric permittivity near the top steel mat interface feature in the GPR measurement and the signal strength of the GPR reflection at the interface. The top steel condition is a dimensionless parameter ranging from 1 (best) to 10 (worst).

Element Rating

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

Very Good: The condition of the top-steel mat is homogeneous and comparable to a new deck in very good condition.

Good: A small percentage of condition of the top-steel mat indicates a deviation from the reference range. There is no apparent defect on the surface of the deck.

Acceptable: There may be some initial delamination near the top steel mat. A greater percentage of measurements indicate a deviation from the design thickness of the overlay. There may be some minor defect on the surface of the deck.

Marginal: There is evidence of defects near the top steel mat. Recommend review of surface elevation for evidence of depression/potholes, potentially due to deterioration caused by delamination near the top steel mat, and initial vertical cracking to the surface. May require remedial action.

Poor: A greater percentage of measurements indicates a deviation from reference range and the presence of defects near the top steel mat. Check surface elevation for evidence of depression/potholes, potentially due to deterioration caused by delamination near the top steel mat, and vertical cracking to the surface. May require repair action.

Example: Defect between Top Rebars – Indication of Delamination

Technical

The condition of the top steel mat is estimated using an estimate of the dielectric permittivity and signal strength of the GPR reflection at/near the top-steel mat interface, at and between the rebars. The estimates are computed and calibrated using the common-mid-point method.

Revised 1 December 2019 GPR Information Details [7] Top Steel Condition (ASC) Definition

The top steel condition is estimated using the dielectric permittivity near the top steel mat interface feature in the GPR measurement and the signal strength of the GPR reflection at the interface. The top steel condition is a dimensionless parameter ranging from 1 (best) to 10 (worst).

Element Rating

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

Very Good: The condition of the top-steel mat is homogeneous and comparable to a new deck in very good condition.

Good: A small percentage of condition of the top-steel mat indicates a deviation from the reference range. There is no apparent defect on the surface of the deck.

Acceptable: There may be some initial delamination near the top steel mat. A greater percentage of measurements indicate a deviation from the design thickness of the overlay. There may be some minor defect on the surface of the deck.

Marginal: There is evidence of defects near the top steel mat. Recommend review of surface elevation for evidence of depression/potholes, potentially due to deterioration caused by delamination near the top steel mat, and initial vertical cracking to the surface. May require remedial action.

Poor: A greater percentage of measurements indicates a deviation from reference range and the presence of defects near the top steel mat. Check surface elevation for evidence of depression/potholes, potentially due to deterioration caused by delamination near the top steel mat, and vertical cracking to the surface. May require repair action.

Example: Defect between Top Rebars – Indication of Delamination

Technical

The condition of the top steel mat is estimated using an estimate of the dielectric permittivity and signal strength of the GPR reflection at/near the top-steel mat interface, at and between the rebars. The estimates are computed and calibrated using the common-mid-point method.

Revised 1 December 2019 GPR Information Details [8] Below Steel Condition (BSC) Definition

The top steel condition is estimated using the dielectric permittivity near the top steel mat interface feature in the GPR measurement and the signal strength of the GPR reflection at the interface. The top steel condition is a dimensionless parameter ranging from 1 (best) to 10 (worst).

Element Rating

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

Very Good: The condition of the top-steel mat is homogeneous and comparable to a new deck in very good condition.

Good: A small percentage of condition of the top-steel mat indicates a deviation from the reference range. There is no apparent defect on the surface of the deck.

Acceptable: There may be some initial delamination near the top steel mat. A greater percentage of measurements indicate a deviation from the design thickness of the overlay. There may be some minor defect on the surface of the deck.

Marginal: There is evidence of defects near the top steel mat. Recommend review of surface elevation for evidence of depression/potholes, potentially due to deterioration caused by delamination near the top steel mat, and initial vertical cracking to the surface. May require remedial action.

Poor: A greater percentage of measurements indicates a deviation from reference range and the presence of defects near the top steel mat. Check surface elevation for evidence of depression/potholes, potentially due to deterioration caused by delamination near the top steel mat, and vertical cracking to the surface. May require repair action.

Example: Defect between Top Rebars – Indication of Delamination

Technical

The condition of the top steel mat is estimated using an estimate of the dielectric permittivity and signal strength of the GPR reflection at/near the top-steel mat interface, at and between the rebars. The estimates are computed and calibrated using the common-mid-point method.

Revised 1 December 2019 GPR Information Details [9] Deck Thickness (DT) Definition

The deck thickness is estimated between the surface and the bottom of deck interface feature in the GPR measurement. The overlay thickness is reported in inches.

<u>Element</u>

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

Example

The deck thickness is estimated as the vertical distance between the surface and the bottom of deck interfaces. The estimates are calibrated using the common-mid-point method.

Revised 1 December 2019 GPR Information Details [10] Bottom Steel Cover (BC) Definition

The bottom steel cover is estimated between the bottom of deck and the bottom steel mat features in the GPR measurement. The bottom steel cover is reported in inches.

Element Rating

The Element ratings are based on the percentage of measurements outside a reference that captures the condition expected in measurements of a deck in very good condition. (see GPR Information Summary for additional information)

Very Good: There are no detectable areas where the bottom steel cover deviates from the design specifications. The bottom steel cover is homogeneous and comparable to the condition of a new deck.

Good: A small percentage of bottom steel cover indicate a deviation from the design requirement.

Acceptable: A greater percentage of measurements indicate a deviation from the design requirement. There is some minor defect on the surface of the deck. The percentage is based on the bottom steel cover that are less than the design requirement.

Marginal: Marginal bottom-steel cover. Recommend review of deck thickness.

Poor: Poor bottom-steel cover. Check deck thickness. May require repair/remedial action.

<u>Example</u>

Top Steel Mat Bottom Steel Mat Bottom of Deck

<u>Technical</u>

The bottom steel cover is estimated as the vertical distance between the bottom of deck and the bottom-steel mat interfaces. The estimates are computed and calibrated using the common-mid-point method.

APPENDIX B

BRIDGE DECK LOCATION INFORMATION & BDCAM ANALYSES RESULTS

				Location a	and Scope			
	Bridge Number:	Sub-Structure:	Span:	Location:				
Date of Last GPR Report:	Bridge Number 7-digits	Sub-Structure	Span Number	District	County	Feature Carried	Feature Intersected	
11/8/2018	0700300	-	1	2	Cecil County	'US 1 '	OCTORARO CREE	к '
11/8/2018	0700300	-	2	2	Cecil County	'US 1 '	OCTORARO CREE	к '
11/8/2018	0700300	-	All	2	Cecil County	'US 1 '	OCTORARO CREE	к '
6/5/2019	1701102	-	1	2	Queen Anne's County	'US 301 SB '	'MD 290 '	
6/5/2019	1701102	-	2	2	Queen Anne's County	'US 301 SB '	'MD 290 '	
6/5/2019	1701102	-	3	2	Queen Anne's County	'US 301 SB '	'MD 290 '	
6/5/2019	1701102	-	All	2	Queen Anne's County	'US 301 SB '	'MD 290 '	
6/5/2019	1701202	-	1	2	Queen Anne's County	'US 301 SB '	'RED LION BRANC	н '
6/5/2019	1701202	-	2	2	Queen Anne's County	'US 301 SB '	'RED LION BRANC	н '
6/5/2019	1701202	-	3	2	Queen Anne's County	'US 301 SB '	'RED LION BRANC	н '
6/5/2019	1701202	-	All	2	Queen Anne's County	'US 301 SB '	'RED LION BRANC	н '
6/5/2019	1701302	-	1	2	Queen Anne's County	'US 301 SB '	'UNICORN BRANC	:Н '
6/5/2019	1701302	-	2	2	Queen Anne's County	'US 301 SB '	'UNICORN BRANC	.н '
6/5/2019	1701302	-	3	2	Queen Anne's County	'US 301 SB '	'UNICORN BRANC	.н '
6/5/2019	1701302	-	All	2	Queen Anne's County	'US 301 SB '	'UNICORN BRANC	.н '
6/6/2019	2108500	-	1	6	Washington County	'MD 68 '	WINCHESTER & W	VESTERN RR '
6/6/2019	2108500	-	2	6	Washington County	'MD 68 '	WINCHESTER & W	VESTERN RR '
6/6/2019	2108500	-	3	6	Washington County	'MD 68 '	WINCHESTER & W	VESTERN RR '
6/6/2019	2108500	-	All	6	Washington County	'MD 68 '	WINCHESTER & W	VESTERN RR '
12/4/2018	2202100	-	1	1	Wicomico County	'US 13 RAMP 'C' (5)'	'US 13 BU '	
12/4/2018	2202100	-	2	1	Wicomico County	'US 13 RAMP 'C' (5)'	'US 13 BU '	
12/4/2018	2202100	-	3	1	Wicomico County	'US 13 RAMP 'C' (5)'	'US 13 BU '	
12/4/2018	2202100	-	4	1	Wicomico County	'US 13 RAMP 'C' (5)'	'US 13 BU '	
12/4/2018	2202100	-	All	1	Wicomico County	'US 13 RAMP 'C' (5)'	'US 13 BU '	
11/28/2018	2202401	-	1	1	Wicomico County	'US 13 NB '	'MD 350 '	
11/28/2018	2202401	-	2	1	Wicomico County	'US 13 NB '	'MD 350 '	
11/28/2018	2202401	-	3	1	Wicomico County	'US 13 NB '	'MD 350 '	
11/28/2018	2202401	-	All	1	Wicomico County	'US 13 NB '	'MD 350 '	
11/28/2018	2202402	-	1	1	Wicomico County	'US 13 SB '	'MD 350 '	
11/28/2018	2202402	-	2	1	Wicomico County	'US 13 SB '	'MD 350 '	
11/28/2018	2202402	-	3	1	Wicomico County	'US 13 SB '	'MD 350 '	
11/28/2018	2202402	-	All	1	Wicomico County	'US 13 SB '	'MD 350 '	

Bridge decks with State Inspection Reports Location and analyzed with BDCAM

General bridge deck information for bridges with inspection reports

				General Bridge Deck Data																			
Bridge Number:	Sub-Structure	Snan:					Deck Thickn	iess (DT)		Overlav Thi	ckness (OT)			Top Steel Co	ver (TC)			Top Steel Spa	cing (TS)		Bottom	Steel Cover	(BC)
Bridge Number 7-digits	Sub-Structure	Span Number	Number of Spans	Total Length	Total Area Bridge Deck Surface	Average	Maximum	Minimum	Per Plan Average	Maximum	Minimum	Per Plan	Average	Maximum	Minimum	Per Plan	Average	Maximum	Minimum	Per Plan	Average Maxim	um Minim	um Per Plan
bridge Humber 7 digits	Sub Su detare	Sparrianiser	number of spans	rotur cengui	Total Area bridge beek buildee	Tweruge	Indantid		i ci i idii j weruge	Indian			/ Wei uge	Maximan		i ci i i di	WeldBe	Maxing				-	1
0700300	-	1	2	101	5050 Bare Concrete	15.012151	92264	0	15 -	-	-	-	2.285433	5.091125	0.054285	2.5	27.396008	64.557341	6.849002	11		-	-
0700300	-	2	2	101	5050 Bare Concrete	15.005045	42326	0	15 -	-	-	-	2.597484	5.08519	0.041453	2.5	21.925174	45.204639	5.481293	11		-	-
0700300	-	All	2	202	10100 Bare Concrete	15.008539	92264	0	15 -	-	-	-	2.444039	5.091125	0.054285	2.5	24.660591	64.557341	5.481293	11		-	-
1701102	-	1	3	43	1656 HMA	9.044701	9.562749	8.780488	9 1.974335	2.369202	1.579468	2	3.287713	4.179485	0.950152	3.5	7.5	10.058832	4.941168	10		-	-
1701102	-	2	3	47	1810 HMA	9.016154	9.412417	8.674058	9 1.927408	2.31289	1.541926	2	3.490995	4.651531	1.751864	3.5	8.030303	11.18029	3.81971	. 10		-	-
1701102	-	3	3	47	1810 HMA	8.986783	9.191574	8.549002	9 1.829259	2.195111	1.463407	2	3.645835	4.599451	2.132903	3.5	8.022388	10.94296	4.05704	10		-	-
1701102	-	All	3	137	5275 HMA	9.016857	9.562749	8.549002	9 1.913099	2.295719	1.53048	2	3.469052	4.651531	0.950152	3.5	7.850897	11.18029	3.81971	10		-	-
1701202	-	1	3	30	1110 HMA	9.006412	9.347364	7.53845	9 1.842073	2.210488	1.473659	2	3.602756	5.005502	1.446514	3.5	9.924242	15.223558	2.48106	5 10		-	-
1701202	-	2	3	30	1110 HMA	8.946831	9.161229	7.269735	9 1.849935	2.219922	1.479948	2	3.434379	4.256305	1.255763	3.5	11.964286	17.050745	2.991071	. 10		-	-
1701202	-	3	3	30	1110 HMA	9.011719	9.360472	7.904165	9 1.909708	2.291649	1.527766	2	3.566131	4.288173	0.653862	3.5	10.078125	13.107068	2.519531	10		-	-
1701202	-	All	3	90	3330 HMA	8.987726	9.360472	7.269735	9 1.866362	2.239634	1.493089	2	3.532945	5.005502	0.653862	3.5	10.655551	17.050745	2.48106	i 10		-	-
1701302	-	1	3	50	1925 HMA	8.996464	9.190087	8.749085	9 2.291747	2.750096	5 1.833398	2	3.546612	5.710635	1.10171	3.5	7.668919	10.205446	4.794554	10		-	-
1701302	-	2	3	50	1925 HMA	8.998801	9.274993	8.422135	9 1.892269	2.270722	1.513815	2	3.318846	4.397799	1.279518	3.5	7.098765	9.80595	5.19405	10		-	-
1701302	-	3	3	50	1925 HMA	8.984562	9.249648	8.626162	9 1.82364	2.188369	1.458912	2	3.395201	4.814817	1.850199	3.5	7.328767	10.028223	4.971777	10		-	-
1701302	-	All	3	150	5775 HMA	8.99324	9.274993	8.422135	9 1.971168	2.365402	1.576935	2	3.418742	5.710635	1.10171	3.5	7.365484	10.205446	6 4.794554	10		-	-
2108500	-	1	3	38	1672 HMA	9.017402	9.38926	8.672798	9 1.798052	2.157663	1.438442	2	3.489464	5.402584	2.062592	3.5	11.46598	18.57718	2.866495	5 11		-	-
2108500	-	2	3	35	1540 HMA	8.994317	9.382729	8.664629	9 1.730057	2.076069	1.384046	2	3.31309	5.222926	1.707392	3.5	13.726489	20.189967	3.431622	11		-	-
2108500	-	3	3	38	1672 HMA	9.020961	9.377293	8.501016	9 1.778095	2.133714	1.422476	2	3.216384	4.697119	2.126276	3.5	9.827592	13.694238	3.149512	11		-	-
2108500	-	All	3	111	4884 HMA	9.011351	9.38926	8.501016	9 1.769775	2.12373	1.41582	2	3.338592	5.402584	1.707392	3.5	11.673354	20.189967	2.866495	5 11		-	-
2202100	-	1	4	32	976 Bare Concrete	7.487048	7.658537	7.270754	7.5 -	-	-	-	1.458074	2.830357	0.279555	2	10.419891	14.727687	3.147313	11		-	-
2202100	-	2	4	103	3142 Bare Concrete	7.561522	8.066268	7.101194	7.5 -	-	-	-	2.272433	4.991628	0.395652	2	8.783094	11.655554	4.844446	5 11		-	-
2202100	-	3	4	96	2928 Bare Concrete	7.520687	7.960705	7.182927	7.5 -	-	-	-	2.254296	4.489614	0.271488	2	8.520182	11.44492	5.05508	3 11		-	-
2202100	-	4	4	32	976 Bare Concrete	7.460296	7.874796	7.281369	7.5 -	-	-	-	1.673798	2.728593	0.231875	2	10.574632	14.639793	3.235207	11		-	-
2202100	-	All	4	263	8022 Bare Concrete	7.524733	8.066268	7.101194	7.5 -	-	-	-	2.089145	4.991628	0.395652	2	9.57445	14.727687	3.147313	11		-	-
2202401	-	1	3	32	1264 LMC	8.030041	9.130977	7.597354	8 -	-	-	-	2.172737	3.187712	0.757979	2	13.129578	33.259676	3.282395	11		-	-
2202401	-	2	3	76	3002 LMC	8.019965	9.280665	7.367334	8 -	-	-	-	1.519843	4.512319	0.121419	2	8.602496	11.493078	5.006922	11		-	-
2202401	-	3	3	32	1264 LMC	8.025862	9.168079	7.755637	8 -	-	-	-	2.136092	3.054108	1.286557	2	15.390433	22.902517	3.847608	11		-	-
2202401	-	All	3	140	5530 LMC	8.023786	9.280665	7.367334	8 -	-	-	-	1.821504	4.512319	0.121419	2	12.374169	33.259676	3.282395	11		-	-
2202402	-	1	3	32	1264 Bare Concrete	7.997454	8.499749	7.413655	8 -	-	-	-	2.172134	3.302161	0.917581	2	12.48587	18.459448	3.121468	3 11		-	-
2202402	-	2	3	76	3002 Bare Concrete	8.013161	8.405962	7.30656	8 -	-	-	-	1.73155	4.449164	1.099497	2	8.69766	11.563476	4.936524	11		-	-
2202402	-	3	3	32	1264 Bare Concrete	7.990593	8.438118	7.430295	8 -	-	-	-	2.377011	3.516583	1.437572	2	14.34143	21.967322	3.585358	3 11		-	-
2202402	-	All	3	140	5530 Bare Concrete	8.004423	8.499749	7.30656	8 -	-	-	-	1.979437	4.449164	0.917581	2	11.841653	21.967322	3.121468	3 11		-	-

Bridge deck condition assessment for bridges with inspection reports

Indege Number Number Substrate <									Last	report						
Bindge Number 7-dgr Bul-Structure Span Number Percent deficient Condition Failing Percent deficient C	Bridge Number:	Sub-Structure:	Span:	Surface Ele	evation (SE)	Surface Co	ndition (SC)	Overlay Condition (OC)	Above Top	Steel (ASC)	Top Steel Co	ndition (TSC)	Below Top	Steel (BSC)		
ONDER 1 54.12582 Poor 180.5370 Acceptable N/A 9.614656 Very Good 0.425855 Very Good 3.12231 Very Good 3.26535 Very Good 6.327569 Very Good 3.26535 Very Good 6.327569 Very Good 2.011215 Very Good 0.447765 Very Good 0.447765 Very Good 2.011215 Very Good 0.447765 Very Good 0.447765 Very Good 2.52756577 0.7275714 Very Good 2.52756577 0.7275714 Very Good 2.2175714 Very Good 2.217574 Very Good 2.2175714 Very Good 2.2175714	Bridge Number 7-digits	Sub-Structure	Span Number	Percent deficient	Condition Rating	Percent deficient	Condition Rating	Percent deficient Condition Rating	Percent deficient	Condition Rating	Percent deficient	Condition Rating	Percent deficient	Condition Rating	Overall Score (1-9)	Overal State (1-4)
STORDE - 1 5.12582 (Parc) 18.03307 Acceptable - N/A 9.51465 (Very Good 0.12231 (Very Good 5.12231 (Very Good 5.12331 (Very Good 5.123331 (Very G																
5700300 - 12 51.24267 Acceptable - N/A 8.97476 Very Good 3.267480 Very Good 3.26880 Very Good 5.34230381 51.20207 5700300 - 1 61.80712 Poor 0 Very Good 0.04855 Very Good 2.00029 Very Good 1.0185570 Very Good 2.00029 Very Good 2.00029 Very Good 2.00029 Very Good 2.20127 Very Good 2.20227 Very Good 2.20237 Very Good 6 0.01720 Very Good 2.20237 Very Good 2.20237 Very Good 6 0.01720 Very Good 2.20237 Very Good 2.20237 Very Good 6.23734219 0.01720 Very Good 0.45751 Very Good 2.20237 Very Good 6.23734219 0.01720 Very Good 0.43934 Very Good 2.20237 Very Good 6.23734219 0.01720 Very Good 0.23550 Very Good 2.20237 Very Good 6.23734219 0.01720 Very Good 0.23736 Very Good 3.2122 Very Good 0.23736 Very Good 3.2122 Very Good 0.23736 Very Good 3.2122 Very Good 3.2122 Very Good 0.23738 Very Good 0.23738 Very Good 3.21232 Very Good 0.237381 Very Good	0700300	-	1	54.125822	Poor	18.053507	Acceptable	- N/A	9.614656	Very Good	0.458305	Very Good	3.122931	Very Good	5	2
Spr0800 - NI 9.28842 Very Good 3.20029 Very Good 5.2796978 5.2796978 Spr0102 - 1 66.30732 Poor 0 Very Good 0.Very Good 10.33355 Very Good 0.427765 Very Good 2.001894 Very Good 6 0.5701102 - 1 66.30936 Poor 0 Very Good 0.Very Good 0.23736 Very Good 2.23933 Very Good 6 0.5701102 - AII 66.36768 Poor 0 Very Good 1.29736 Good 0.23356 Very Good 2.23933 Very Good 6 0.23736 Very Good 2.239735 Very Good 6 0.23736 Very Good 2.239736 Very Good 6 0.2376 Very Good 0.37100 Very Good 6 0.23785 Very Good 0.31520	0700300	-	2	51.242673	Poor	16.522897	Acceptable	- N/A	8.974776	Very Good	0.507409	Very Good	3.26635	Very Good	5.334230343	2
International State Internat International State <th< td=""><td>0700300</td><td>-</td><td>All</td><td>51.808027</td><td>Poor</td><td>17.301513</td><td>Acceptable</td><td>- N/A</td><td>9.28842</td><td>Very Good</td><td>0.48545</td><td>Very Good</td><td>3.200029</td><td>Very Good</td><td>5.279569578</td><td>2</td></th<>	0700300	-	All	51.808027	Poor	17.301513	Acceptable	- N/A	9.28842	Very Good	0.48545	Very Good	3.200029	Very Good	5.279569578	2
TOTALIZ - 2 78.81703 / Por 0 Very Good 0 Very Good 1.03855 / Very Good 1.98557 / Very Good 6 - TOTALIZ - All 64.36578 / Por 0 Very Good 1.97856 / Very Good 2.23247 / Very Good 6.27334 / 219 TOTALIZ - All 64.36578 / Por 0 Very Good 1.97856 / Very Good 0.55255 / Very Good 2.23247 / Very Good 6.23734 / 219 TOTALIZ - 1 2.30.5741 Marginal 2.463161 / Very Good 1.39282 / Good 1.249597 / Very Good 0.433314 / Very Good 3.71007 / Very Good 6.23734 / 219 TOTALIZ - 1 2.30.5741 Marginal 1.29738 / Very Good 1.39282 / Cood 1.38361 / Very Good 0.3712038 / Very Good 6.023342 / Very Good 6.023342 / Very Good 6.023342 / Very Good 6.02342 / Very Good 6.02342 / Very Good 6.02342 / Very Good 6.02342 / Very Good 6.023439 / Very Good 1.3022 / Very Good 1.3022 / Very Good 6.023439 / Very Good 6.023439 / Very Good 1.3022 / Very Good 1.3022 / Very Good 6.023439 / Very Good 6.023439 / Very Good 1.30232 / Very Good	1701102	-	1	61.807192	Poor	0	Very Good	0 Very Good	12.191352	Very Good	0.447766	Very Good	2.001094	Very Good	6	2
TOTUD2 All 61.00998 Poor 0 Very Good 0 Very Good 0 2.1788 Very Good 2.32433 Very Good 6 TOTUD2 All 64.366738 Poor 0 Very Good 0.1247369 Very Good 0.52565 Very Good 2.212427 Very Good 6.237334219 TOTUD2 2 30.6764 Marginal 1.267807 Very Good 1.247359 Very Good 0.65765 Very Good 3.71007 Very Good 6.237334219 TOTUD2 3 30.6764 Marginal 2.463151 Very Good 1.839233 Good 1.293957 Very Good 0.35765 Very Good 3.71007 Very Good 6 2.7771707 Very Good 6.69579604 2.7771707 Very Good 6.69577277 Very	1701102	-	2	78.817037	Poor	C	Very Good	0 Very Good	10.93856	Very Good	0.787014	Very Good	1.985579	Very Good	6	2
International All 64.366798 Poor 0 Very Good 12.71967 Very Good 0.52565 Very Good 2.21247 Very Good 6.27334219 101020 2 30.6764 Marginal 1.67007 Very Good 1.392823 Good 7.12232 Very Good 0.433914 Very Good 2.463151 Very Good 6.237334219 101202 - 3 3.2979618 Marginal 1.29738 Very Good 1.619005 Good 1.878517 Good 0.93302 Very Good 3.71007 Very Good 6 101202 - All 3.176766 Marginal 1.20738 Very Good 1.878516 Very Good 1.2383812 Very Good 6 2 101202 - All 3.3176766 Marginal 0.245497 Very Good 3.81947 Good 9.99207 Very Good 1.238381 Very Good 1.32028 Very Good 1.348326 Very Good 6.6950694 7 101302 - All 2.776223 Acceptable 0.624694 Very Good 9.99207 Very Good 1.93436 Very Good 1.238381 Very Good 6.61594739 7 101302 - All 2.776223 Acceptable 0.6246497 Very Good 9.122335 Very Good 1.93464 Very Good 6	1701102	-	3	61.009936	i Poor	0	Very Good	0 Very Good	14.587623	Good	0.217186	Very Good	2.392433	Very Good	6	2
International method 1 2953497 Marginal 1.678077 Very Good 1.59736 Good 7.12822 Very Good 0.43914 Very Good 2.40755 Very Good 6.2373429 7.2373573113313333 7.2373573113313332	1701102	-	All	64.366798	Poor	C	Very Good	0 Very Good	12.471967	Very Good	0.552565	Very Good	2.212427	Very Good	6	2
Yn1202 - 2 30.6764 Marginal 2.46150 Very Good 13.92823 Good 12.930957 Very Good 0.66765 Very Good 3.71007 Very Good 6 1701202 - All 3.12979618 Marginal 1.29338 Very Good 1.619005 Good 14.877477 Good 0.939020 Very Good 3.71028 Very Good 6 0.7101202 1701302 - All 3.116766 Marginal 2.10255 Very Good 0.819647 Good 9.950270 Very Good 1.293831 Very Good 6.605094 0.777755 Very Good 1.30202 Very Good 0.950027 Very Good 1.929821 Very Good 0.95002 Very Good 0.95002 Very Good 1.92028 Very Good 0.95002 Very Good 0.95002 Very Good 1.92028 Very Good 1.91346 Very Good 1.259524 Very Good 6.6159739 2 701302 - All 2.2776234 Acceptable 0.02719 Very Good 4.126067 Very Good 1.80141 Very Good 1.259524 Very Good 6.6159739 2 701302 - All 2.2723894 Acceptable 7.1577	1701202	-	1	29.594579	Marginal	1.678027	Very Good	1.597363 Good	7.162823	Very Good	0.433914	Very Good	2.406755	Very Good	6.237334219	2
1701202 - 3 32.979618 Marginal 12.9738 Very Good 16.16005 Good 14.875417 Good 0.933902 Very Good 3.71208 Very Good 6 7 1701202 - All 31.176786 Marginal 2.10295 Very Good 1.527827 Good 9.35207 Very Good 1.345816 Very Good 3.415242 Very Good 6.6095094 2.7 1701302 - 2 1.383162 Acceptable 0.246949 Very Good 0.335189 Very Good 1.444232 Very Good 0.995067 Very Good 6.6095094 7 1701302 - 3 3.4470845 Marginal 0.52211 Very Good 0.464677 Very Good 4.99522 Very Good 1.444232 Very Good 1.215262 Very Good 6.615847339 1701302 - All 27.72233 Acceptable 0.60714 Very Good 0.00279 Very Good 4.806607 Very Good 1.215262 Very Good 6.61584739 2.1558 Very Good 4.54233 Very Good 6.61584739 108500 - 2 2.6342676 Acceptable 5.842467 Good 0.00279 Very Good 4.30300 Very Good 4.30707 Very Good 6.39449541 2.5072444 Very Good 6.6125420479 Very Good	1701202	-	2	30.6764	Marginal	2.463161	Very Good	1.392823 Good	12.930957	Very Good	0.66765	Very Good	3.71007	Very Good	6	2
International All Bit 16786 Marginal 2.10295 Very Good 1.15282 Very Good 0.77875 Very Good 3.41524 Very Good 6.6095064 1701302 - 2 27.809305 Acceptable 0.245497 Very Good 0.995027 (very Good 1.293811 Very Good 1.30028 Very Good 6.6095064 2 1701302 - 2 1.83812 Acceptable 0.246494 Very Good 0.495497 Very Good 4.93926 Very Good 1.244329 Very Good 1.25826 Very Good 6.6095064 2 1701302 - All 27.75223 Acceptable 0.607814 Very Good 0.972527 Very Good 1.806101 Very Good 1.25826 Very Good 6.61584739 1701302 - 1 24.73884 Acceptable 7.1537 Good 0.000261 Very Good 4.12667 Very Good 1.806101 Very Good 4.433977 Very Good 6.61584739 1208500 - 1 24.73884 Acceptable 6.824276 Good 0.00279 Very Good 3.43280 Very Good 4.34397 Very Good 6.399473 2.235738 Very Good 3.4329 Very Good 4.43097 Very Good 6.83944391 1208500 - All 25.9974	1701202	-	3	32.979618	Marginal	1.297338	Very Good	1.619005 Good	14.875417	Good	0.933902	Very Good	3.712038	Very Good	6	2
101302 - 1 27.80396 Acceptable 0.245497 Very Good 0.819647 Good 9.990276 Very Good 1.293831 Very Good 1.302028 Very Good 6.60950694 1701302 - 2 1.38162 Acceptable 0.246499 Very Good 0.335189 Very Good 1.444329 Very Good 0.125632 Very Good 0.5563733 0.557527 Very Good 8.09606 Very Good 1.806101 Very Good 1.45282 Very Good 6.615847339 2108500 - 1 2.472584 Acceptable 6.824276 Good 0.000279 Very Good 4.126607 Very Good 3.3098401 Very Good 4.43028 Very Good 4.430528 Very G	1701202	-	All	31.176786	i Marginal	2.10295	Very Good	1.527827 Good	11.363816	Very Good	0.778765	Very Good	3.415242	Very Good	6	2
170302 - 2 13.83162 Acceptable 0.246949 Very Good 4.909262 Very Good 1.444329 Very Good 0.2502112 Very Good 0.252112 Very Good 0.12533 Very Good 1.38164 Very Good 1.25824 Very	1701302	-	1	27.809305	Acceptable	0.245497	Very Good	0.819647 Good	9.950276	Very Good	1.293831	Very Good	1.302028	Very Good	6.60950694	2
1701302 - AI 3 34.470845 Marginal 0.522112 Very Good 9.122335 Very Good 1.93146 Very Good 1.259624 Very Good 6.61584739 C2 1701302 - AII 27.775223 Acceptable 0.60784 Very Good 4.21067 Very Good 1.259624 Very Good 6.61584739 C2 6.61584739 C2 C6.342676 Acceptable 6.824276 Good 0.000279 Very Good 4.26067 Very Good 3.43209 Very Good 4.30074 Very Good 6.39449541 C2 C2 C6.342676 Acceptable 6.824276 Good 0.00279 Very Good 3.03209 Very Good 4.30074 Very Good 6.39449541 C2 C2 C2 C2.34276 Acceptable 5.184598 Very Good 0.00279 Very Good 3.03209 Very Good 4.30074 Very Good 6.39449541 C2	1701302	-	2	13.83162	Acceptable	0.246949	Very Good	0.335189 Very Good	4.909262	Very Good	1.444329	Very Good	0.996067	Very Good	7	2
1701302 All 27.776223 Acceptable 0.607814 Very Good 0.807814 Very Good 1.806101 Very Good 1.215826 Very Good 6.615847339 2108500 - 1 24.723884 Acceptable 6.824276 Good 0.000461 Very Good 2.834662 Very Good 4.33039 Very Good 6.615847339 2108500 - All 26.324676 Acceptable 6.824276 Good 0.00079 Very Good 3.43209 Very Good 4.33039 Very Good 6.339449541 C 2108500 - All 25.90741 Acceptable 6.692078 Good 0 Very Good 3.038401 Very Good 4.41523 Very Good 6.339449541 2020100 - 1 4.47733 Very Good - N/A 12.847068 Good 6.58504 Very Good 6.659274 Very Good 2.214059372 202100 - 4 6.559874 Very Good - N/A 1.7735214976	1701302	-	3	34.470845	Marginal	0.522112	Very Good	0.464647 Very Good	9.122535	Very Good	1.93146	Very Good	1.259624	Very Good	6	2
2108500 - 1 24.72384 Acceptable 7.1537 Good 0.000461 Very Good 4.281662 Very Good 4.543233 Very Good 6 2 2108500 - 2 26.342676 Acceptable 6.824276 Good 0.00279 Very Good 4.668462 Very Good 3.43209 Very Good 4.370049 Very Good 6 2 2108500 - All 25.907414 Acceptable 6.692078 Good 0 Very Good 4.072354 Very Good 4.411733 Very Good 6 2 202100 - 1 4.471733 Very Good 2.25738 Very Good N/A 2.833189 Very Good 0.657341 Very Good 6 2.27738 202100 - 2 13.7878 Acceptable 2.2414049 Very Good N/A 18.470686 Good 6.585094 Acceptable 11.102442 Acceptable 6.214059837 202100 - All 12.518713 Good 10.21483 Good 1.15724 Very Good 7.737562111 1.2	1701302	-	All	27.776223	Acceptable	0.607814	Very Good	0.572527 Very Good	8.096606	Very Good	1.806101	Very Good	1.215826	Very Good	6.615847339	2
2108500 - 2 26.342676 Acceptable 6.824276 Good 0.00279 Very Good 3.43209 Very Good 4.370049 Very Good 6.339449541 22 2108500 - All 25.97741 Acceptable 5.88498 Very Good 0.Very Good 3.01204 Very Good 4.30077 Very Good 6.339449541 22 2108500 - All 25.97741 Acceptable 6.692078 Good 0 Very Good 3.11014 Very Good 4.41523 Very Good 6.339449541 Very Good 3.11014 Very Good 4.41523 Very Good 6.339449541 Very Good 3.11014 Very Good 4.41523 Very Good 8.088920861 2.10059374 Very Good 3.11014 Very Good 6.59594 Very Good 8.088920861 2.140598372 202100 - N/A 11.847068 Good 4.902052 Good 8.40554 Very Good 8.405856 Good 6.2140599374 202100 - All 12.18513 Good 10.211483 Good N/A 1.17032 Very Good	2108500	-	1	24.723884	Acceptable	7.1537	Good	0.000461 Very Good	4.126067	Very Good	2.819662	Very Good	4.543233	Very Good	6	2
2108500 - NA 26.126463 Acceptable 5.184598 Very Good 4.072836 Very Good 3.098401 Very Good 4.300777 Very Good 6.339449541 2108500 - All 25.907414 Acceptable 6.62078 Good 0 Very Good 3.10141 Very Good 4.44123 Very Good 6.339449541 Very Good 6.339449541 Very Good 4.44123 Very Good 0.657341 Very Good 6.839449541 Very Good 4.340554 Very Good 0.37838 Very Good 0.657341 Very Good 6.839449541 Very Good 0.657341 Very Good 6.2140598372 202100 - A 13.751905 Acceptable 2.414049 Very Good - N/A 11.701568 Good 4.800682 Very Good 1.012424 Acceptable 6.25744060 2.02400 - N/A 1.701568 Good 1.012342 Very Good 1.012342 Very Good 7.737562111 1.269914406000 2.02401 - N/	2108500	-	2	26.342676	Acceptable	6.824276	Good	0.00279 Very Good	4.668462	Very Good	3.43209	Very Good	4.370049	Very Good	6	2
2108500 - All 25.907414 Acceptable 6.692078 Good 0 Very Good 4.340554 Very Good 3.110141 Very Good 4.441523 Very Good 6 2202100 2020100 - 1 4.471733 Very Good 2.325738 Very Good N/A 2.338189 Very Good 0.378386 Very Good 0.657341 Very Good 8.88226086 2020100 - 12 13.78738 Acceptable 2.298941 Very Good N/A 18.470668 Good 6.585094 Zeoptable 11.10242 Acceptable 6 2.14059876 2020100 - 4 6.596272 Very Good 2.532886 Very Good N/A 1.7701568 Good 4.902052 Good 1.082386 Very Good 7.737562111 1.216991444 2020100 - All 12.518513 Good 10.211483 Good N/A 1.7701568 Good 0.761375 Very Good 1.082386 Very Good 5.722137596 2.555724800 202010 - All 12.518513 Good 10.211483 Good N/A 2.2505394 Acceptable 6.2554 Acceptable 1.15724 Very Good 5 2.222400 2.220401 3.363888 Marginal 38.18141 Poor N/A 2.2015375 Very Good 0.763735 Very Good 0.810737 Very Good <t< td=""><td>2108500</td><td>-</td><td>3</td><td>26.126463</td><td>Acceptable</td><td>5.184598</td><td>Very Good</td><td>0 Very Good</td><td>4.072836</td><td>Very Good</td><td>3.098401</td><td>Very Good</td><td>4.390777</td><td>Very Good</td><td>6.339449541</td><td>2</td></t<>	2108500	-	3	26.126463	Acceptable	5.184598	Very Good	0 Very Good	4.072836	Very Good	3.098401	Very Good	4.390777	Very Good	6.339449541	2
202100 - 1 4.471733 Very Good 2.325738 Very Good - N/A 2.338189 Very Good 0.378386 Very Good 0.657341 Very Good 8 0.889260862 202100 - 1.3<78738	2108500	-	All	25.907414	Acceptable	6.692078	Good	0 Very Good	4.340554	Very Good	3.110141	Very Good	4.441523	Very Good	6	2
202100 - 13.78738 Acceptable 2.29894 Very Good - N/A 18.470668 Good 6.585094 Acceptable 11.102442 Acceptable 6 2.140598378 202100 - A A 13.751905 Acceptable 2.414049 Very Good - N/A 17.701568 Good 4.902052 Good 8.410586 Good 7.737562111 1.269914444 202100 - AII 12.518513 Good 10.211483 Good - N/A 1.17932 Very Good 1.280482 Very Good 1.08236 Very Good 7.737562111 1.269914444 202010 - AII 12.518513 Good 10.211483 Good - N/A 2.2505394 Acceptable 6.556072 Very Good 5.72213756 2.555724800 2.552724800 2.522401 - 3.365388 Marginal 38.158141 Poor - N/A 16.386454 Good 0.010478 Very Good 1.11574 Very Good 5.72213756 2.55724800 2.220401 - AIII 41.400731 Ma	2202100	-	1	4.471733	Very Good	2.325738	Very Good	- N/A	2.338189	Very Good	0.378386	Very Good	0.657341	Very Good	8	0.889260861
2202100 - N/A 17.701568 Good 4.902052 Good 8.410586 Good 6 2.174402602 2202100 - N/A 1.17932 Very Good 1.280482 Very Good 1.082396 Very Good 7.737562111 1.269914442 2202100 - All 12.518513 Good 10.211483 Good - N/A 2.2505394 Acceptable 1.3856977 Acceptable 5.72213756 2.555724802 2020401 - N/A 16.38644 Acceptable 6.6554 Acceptable 1.356977 Acceptable 5.72213756 2.555724802 2020401 - N/A 16.38644 Food 0.030656 Very Good 1.115724 Very Good 5.72213756 2.555724802 2020401 - N/A 16.38644 Good 0.030656 Very Good 0.819737 Very Good 5.72213756 2.55724802 2020401 - N/A 16.38644 Good 0.030656 Very Good 0.819737 Very Good 5.7213756 2.5724802 2020402 -	2202100	-	2	13.78738	Acceptable	2.298941	Very Good	- N/A	18.470668	Good	6.585094	Acceptable	11.102442	Acceptable	6	2.140598378
202100 - M4 6.596872 Very Good 2.532896 Very Good - N/A 1.17932 Very Good 1.280482 Very Good 1.082396 Very Good 7.737562111 1.269914444 202100 - All 12.518513 Good 10.211483 Good - N/A 22.505394 Acceptable 6.5554 Acceptable 13.567977 Acceptable 5.722137596 2.555724800 2020401 - M1 43.424046 Marginal 39.14898 Poor - N/A 2.606696 Very Good 0.01373 Very Good 1.15724 Very Good 5.722137596 2.555724800 2020401 - M2 33.663888 Marginal 38.158141 Poor - N/A 16.386454 Good 0.030656 Very Good 0.011478 Very Good 0.61373 Very Good 0.011478 Very Good 0.61373 Very Good 0.011478 Very Good 0.010478 Very Good 0.011478 Very Good 0.011478 Very Good 0.01148 Very Good 0.011418 0.011418 0.011418 0	2202100	-	3	13.751905	Acceptable	2.414049	Very Good	- N/A	17.701568	Good	4.902052	Good	8.410586	Good	6	2.174402602
202100 - All 12.518513 Good 10.211483 Good - N/A 22.505394 Acceptable 13.56797 Acceptable 5.72213796 2.555724800 202010 - 1 43.424046 Marginal 39.148983 Poor - N/A 2.606696 Very Good 0.761373 Very Good 1.115724 Very Good 5.72213796 2.555724800 2020401 - 23.663888 Marginal 38.158141 Poor - N/A 2.606696 Very Good 0.761373 Very Good 0.010478 Very Good 5.72213796 2.555724800 2020401 - 3.3663888 Marginal 38.158141 Poor - N/A 2.271153 Very Good 0.010478 Very Good 0.81977 <	2202100	-	4	6.596872	Very Good	2.532896	Very Good	- N/A	1.17932	Very Good	1.280482	Very Good	1.082396	Very Good	7.737562111	1.269914442
2202401 - 1 43.42404 Marginal 39.148983 Poor - N/A 2.606696 Very Good 0.761373 Very Good 1.115724 Very Good 5 2 202401 - 0 2 33.663888 Marginal 38.15814 Poor - N/A 16.386454 Good 0.030656 Very Good 0.010478 Very Good 5 2 202401 - All 41.400731 Marginal 39.701609 Poor - N/A 2.271153 Very Good 0.678282 Very Good 0.819737 Very Good 5 2 202401 - All 41.400731 Marginal 44.740552 Poor - N/A 9.83328 Very Good 0.678282 Very Good 1.84971 Very Good 5 2 202402 - 1 30.255382 Marginal 11.898782 Good - N/A 2.58839 Very Good 0.79634 Very Good 0.744217 Very Good 6 2 202402 - 1 30.255382	2202100	-	All	12.518513	Good	10.211483	Good	- N/A	22.505394	Acceptable	6.2554	Acceptable	13.567977	Acceptable	5.722137596	2.555724808
202401 - 133.663888 Marginal 38.15814 Poor - N/A 16.386454 Good 0.030656 Very Good 0.010478 Very Good 5 22 22 22 22 41.400731 Marginal 39.701609 Poor - N/A 2.271153 Very Good 0.678282 Very Good 0.819737 Very Good 5 22 22 22 41.400731 Marginal 44.740552 Poor - N/A 9.83228 Very Good 0.678282 Very Good 0.819737 Very Good 5 22 22 22 2 13.84511 Very Good 18.8471 Very Good 5 22 2 2 2 33.58141 Poor - N/A 9.83228 Very Good 0.678282 Very Good 0.819737 Very Good 5 2	2202401	-	1	43.424046	Marginal	39.148983	Poor	- N/A	2.606696	Very Good	0.761373	Very Good	1.115724	Very Good	5	2
2020401 - NA 2.271153 Very Good 0.678828 Very Good 0.81973 Very Good 5 2 2020401 - All 41.68763 Marginal 44.740592 Poor - N/A 9.83328 Very Good 0.678828 Very Good 1.38491 Very Good 5 2 202402 - 1 30.255382 Marginal 11.898782 Good - N/A 9.83328 Very Good 0.70654 Very Good 0.744217 Very Good 6 2 202402 - 2 26.728305 Acceptable 12.33176 Good - N/A 3.873698 Very Good 0.07054 Very Good 0.002852 Very Good 6 2 202402 - 3.3290375 Marginal 18.347768 Acceptable - N/A 3.873698 Very Good 0.002852 Very Good 0.002852 Very Good 6 2 202402 - All 3.290375 Marginal 18.347768 Acceptable - N/A 2.268231 Very Good<	2202401	-	2	33.663888	8 Marginal	38.158141	Poor	- N/A	16.386454	Good	0.030656	Very Good	0.010478	Very Good	5	2
2020401 - All 41.68763 Marginal 44.740592 Poor - N/A 9.83328 Very Good 0.793995 Very Good 1.38491 Very Good 5 5 2020402 - 1 30.255382 Marginal 11.898782 Good - N/A 2.58839 Very Good 0.704547 Very Good 0.744217 Very Good 6 2 202402 - 2 2.67.28305 Acceptable 12.33176 Good - N/A 3.873688 Very Good 0.704547 Very Good 0.002852 Very Good 6 2 202402 - 3 3.290375 Marginal 18.347768 Acceptable - N/A 2.268231 Very Good 0.002852 Very Good 0.60871 Very Good 0.60871 Very Good 0.601291 Very Good 6 2 202402 - All 34.1259 Marginal 16.8299 Acceptable - N/A 2.49494 <td< td=""><td>2202401</td><td>-</td><td>3</td><td>41.400731</td><td>Marginal</td><td>39.701609</td><td>Poor</td><td>- N/A</td><td>2.271153</td><td>Very Good</td><td>0.678828</td><td>Very Good</td><td>0.819737</td><td>Very Good</td><td>5</td><td>2</td></td<>	2202401	-	3	41.400731	Marginal	39.701609	Poor	- N/A	2.271153	Very Good	0.678828	Very Good	0.819737	Very Good	5	2
2020402 - 1 30.255382 Marginal 11.898782 Good - N/A 2.58839 Very Good 0.704517 Very Good 0.744217 Very Good 6 22 2020402 - 26.728305 Acceptable 12.331376 Good - N/A 3.873698 Very Good 0 Very Good 0.002852 Very Good 6 22 2020402 - 3 32.90375 Marginal 18.347768 Acceptable - N/A 2.268231 Very Good 0.869671 Very Good 0.64819 Very Good 6 22 2020402 - All 34.12259 Marginal 16.82999 Acceptable - N/A 4.94949 Very Good 0.807529 Very Good 0.101291 Very Good 6 22	2202401	-	All	41.68763	Marginal	44.740592	Poor	- N/A	9.83328	Very Good	0.793995	Very Good	1.38491	Very Good	5	2
2020402 - 2 2.6.728305 Acceptable 12.331376 Good - N/A 3.873698 Very Good 0 Very Good 0.002852 Very Good 6 22 2020402 - 3 32.90375 Marginal 18.347768 Acceptable - N/A 2.268231 Very Good 0.06819 Very Good 6 22 2020402 - All 34.12259 Marginal 16.8299 Acceptable - N/A 4.94949 Very Good 0.807529 Very Good 0.101291 Very Good 6 22	2202402	-	1	30.255382	Marginal	11.898782	Good	- N/A	2.58839	Very Good	0.70654	Very Good	0.744217	Very Good	6	2
2020402 - All 32.90375 Marginal 18.347768 Acceptable - N/A 2.268231 Very Good 0.869671 Very Good 0.64819 Very Good 6 2202402 202402 - All 34.12259 Marginal 16.82999 Acceptable - N/A 4.94949 Very Good 0.807529 Very Good 0.101291 Very Good 6 22	2202402	-	2	26.728305	Acceptable	12.331376	Good	- N/A	3.873698	Very Good	0	Very Good	0.002852	Very Good	6	2
202402 - All 34.12259 Marginal 16.82999 Acceptable - N/A 4.94949 Very Good 0.807529 Very Good 0.101291 Very Good 6	2202402	-	3	32.90375	Marginal	18.347768	Acceptable	- N/A	2.268231	Very Good	0.869671	Very Good	0.64819	Very Good	6	2
	2202402	-	All	34.12259	Marginal	16.82999	Acceptable	- N/A	4.94949	Very Good	0.807529	Very Good	0.101291	Very Good	6	2

APPENDIX C

MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION FIELD EXPLORATIONS DIVISION BRIDGE DECK CONDITION SURVEYS

MARYLAND STATE HIGHWAY ADMINISTRATION FIELD EXPLORATIONS DIVISION

BRIDGE NO:	0700300	
LOCATION:	US 1 over Octoraro Creek	
DATE CONSTRUCTED:	1933	
DATE TESTED:	August, 2016	
<u>TYPE OF STRUCTURE</u> :	Steel girder approximately 2 pier and two abutments. Th roadway.	00 feet long 50 feet wide with one lese dimensions are based on the clear
OBSERVATION:	The pier and both abutment All have numerous cracks th	s and appear to be in poor condition. roughout with a several spalled areas.
<u>TYPE OF TEST(S)</u> :	CORROSION SURVEY:	Shown in Exhibit 1, 2, and 3.
	CHLORIDE SURVEY:	Shown in Exhibit 1 and 2.
	BORING SURVEY:	Shown in Exhibits 1 and 2.
Ţ	TEST SITE LOCATIONS:	Shown in Exhibit 3

RECOMMENDATIONS: This recommendation is based on a materials evaluation. After a visual inspection was completed we proceeded to perform a corrosion survey, boring survey and chloride testing. Based on these evaluations, we have concluded that the pier and both abutments need rehabilitation. Rehabilitation would require the concrete to be removed to a minimum depth of 5.0 in. for the pier 5.0 in. for both abutments or to sound concrete. Placement of a high density nonporous concrete should be used to prevent further moisture penetration. However due to the high chloride content at the five inch level complete removal should be considered.

Prepared by: Andre' Pridgen

MARYLAND STATE HIGHWAY ADMINISTRATION FIELD EXPLORATIONS DIVISION

STRUCTURE NO:	1701102					
LOCATION:	US 301 SB over MD 290					
DATE CONSTRUCTED:	1967					
DATE TESTED:	April 2017					
<u>TYPE OF STRUCTURE</u> :	Steel Beam Bridge approximation abutments and 2 bents. These width.	ately 137 feet long, 40 feet wide, with 2 e dimensions are based on the clear roadway				
<u>TYPE OF SURFACE</u> :	A 2.0 Bituminous wearing surface on a Concrete deck approximately 7.0 inches.					
OBSERVATION:	The right lane appears to be in throughout the deck surface. fair condition with a few spal condition with numerous crac	n poor condition with numerous patches The underside of the deck appears to be in led areas, but the expansion dams are in poor eks and some efflorescence.				
TYPE OF TEST(S):	CORROSION SURVEY:	Shown in Exhibit 1, 2, and 3.				
ŝ.	CHLORIDE SURVEY:	Shown in Exhibit 1 and 2.				
	BORING SURVEY:	Shown in Exhibits 1 and 2.				
	TEST SITE LOCATIONS:	Shown in Exhibit 3.				
	PACHOMETER SURVEY: the presence of a bituminous of	A pachometer survey not performed due to overlay.				
	DELAMINATION SURVE conducted due to the presence	Y: A delamination survey was not of a bituminous overlay.				
RECOMMENDATIONS:	The following recommendations visual inspection was completed and boring survey. Based on the is in a deteriorated state. We rec structure. Rehabilitation would r depth of 3.0 inches or to sound c nonporous concrete, to prevent n QA-03 and QA-09 may need add existing at the time of testing and this deck is 2 to 5 years. The life time remaining before the deck b caused by continuous maintenant	are based on a materials evaluation. After a , we proceeded to perform a corrosion, chloride, ese evaluations, we have concluded that the deck commend rehabilitation for the span of this equire the concrete to be removed to a minimum oncrete and replaced with a high-density noisture penetration. However, test sites QA-01, ditional concrete removed. Based on conditions d without rehabilitation the life expectancy of e expectancy of a bridge deck is the estimated becomes a safety hazard or a hindrance to traffic ce.				

Prepared by: Andre' Pridgen

÷.

MARYLAND STATE HIGHWAY ADMINISTRATION FIELD EXPLORATIONS DIVISION BRIDGE DECK CONDITION SURVEY

STRUCTURE NO:	1701202			
LOCATION:	US 301 SB over Red Lion Br	ranch		
DATE CONSTRUCTED:	1967			
DATE TESTED:	April, 2017			
TYPE OF STRUCTURE:	Steel beam bridge approxima abutments and 2 piers. These	tely 87 feet long 40 feet wide with 2 e dimensions are based on the clear roadway.		
<u>TYPE OF SURFACE</u> :	Bituminous wearing surface ranging in thickness from 1.5 to 2.0 inches concrete deck approximately 7.0 inches thick.			
OBSERVATION:	The Bridge is covered with co condition	oncrete patches but the underside is in good		
T <u>YPE OF TEST(S)</u> :	CORROSION SURVEY:	Shown in Exhibit 1, 2, and 3.		
	CHLORIDE SURVEY:	Shown in Exhibit 1 and 2.		
	BORING SURVEY:	Shown in Exhibits 1 and 2.		
	TEST SITE LOCATIONS:	Shown in Exhibit 3.		

BRIDGE DECK CODITION SURVEY BRIDGE DECK NO: 1701202 PAGE 2

RECOMMENDATIONS: This recommendation is based on a materials evaluation. After a visual inspection was completed, we proceeded to perform a corrosion, chloride and boring survey. Based on these evaluations, we have concluded that deteriorated concrete should be removed along with its chloride contaminates. It is our recommendation that rehabilitation be done to this bridge. Rehabilitation would require the concrete to be removed to a minimum depth of 3.5 inches or to sound concrete. Placement of a high density nonporous concrete should be used to prevent further moisture penetration. Additional concrete will need to be removed in the vicinity of test sites QA-02 and QA-03. Based on conditions existing at the time of testing and without rehabilitation the life expectancy of this span is 0 to 3 years. The life expectancy of a bridge deck is the estimated time remaining before the deck becomes a safety hazard or a hindrance to traffic caused by continuous maintenance

Prepared by: Al Hymiller

MARYLAND STATE HIGHWAY ADMINISTRATION FIELD EXPLORATIONS DIVISION

STRUCTURE NO:	1701302					
LOCATION:	US 301 SB over Unicorn Bra	anch				
DATE CONSTRUCTED:	1967					
DATE TESTED:	April 2017					
<u>TYPE OF STRUCTURE</u> :	Steel Beam Bridge approximately 147 feet long, 40 feet wide, with 2 abutments and 2 bents. These dimensions are based on the clear roadway width.					
TYPE OF SURFACE:	Bituminous wearing surface a Concrete deck approximately	ranging in depth from 1.75 to 2.5 inches on a 7.0 inches.				
OBSERVATION:	The deck appears to be in pop patches and a few spalled are underside of the deck appears area with exposed rusted reba	or condition with numerous cracks and eas throughout the deck surface. The s to be in good condition with one spalled ar.				
TYPE OF TEST(S):	CORROSION SURVEY:	Shown in Exhibit 1, 2, and 3.				
	CHLORIDE SURVEY:	Shown in Exhibit 1 and 2.				
	BORING SURVEY:	Shown in Exhibits 1 and 2.				
9	TEST SITE LOCATIONS:	Shown in Exhibit 3.				
	PACHOMETER SURVEY the presence of a bituminous	: A pachometer survey not performed due to overlay.				
	DELAMINATION SURVE conducted due to the presence	CY: A delamination survey was not e of a bituminous overlay.				
<u>RECOMMENDATIONS</u> :	The following recommendation visual inspection was completed and boring survey. Based on the is in a deteriorated state. We re- structure. Rehabilitation would depth of 3.0 inches or to sound nonporous concrete, to prevent to existing at the time of testing an this deck is 2 to 5 years. The lift time remaining before the deck	s are based on a materials evaluation. After a d, we proceeded to perform a corrosion, chloride, ese evaluations, we have concluded that the deck commend rehabilitation for the span of this require the concrete to be removed to a minimum concrete and replaced with a high density moisture penetration. Based on conditions d without rehabilitation the life expectancy of fe expectancy of a bridge deck is the estimated becomes a safety hazard or a hindrance to traffic				

caused by continuous maintenance.

Prepared by: Andre' Pridgen

MARYLAND STATE HIGHWAY ADMINISTRATION FIELD EXPLORATIONS DIVISION BRIDGE DECK CONDITION SURVEY

STRUCTURE NO:	2108500	
LOCATION:	MD 68 over Winchester and	Western RR
DATE CONSTRUCTED:	1965	
DATE TESTED:	October 2014	
<u>TYPE OF STRUCTURE</u> :	Steel beam bridge approxima abutments and 2 piers. These width.	ately 111 feet long 44 feet wide, with 2 e dimensions are based on the clear roadway
TYPE OF SURFACE:	Concrete deck approximately	7.0 inches thick with 2" bituminous overlay.
OBSERVATION:	Bituminous overlay is in moo patches. Span one contains le surface, medium to high seve and along Abutment A and a two contains several full dept cracking and moderate to seve surrounding the patches. Nin of span two. The underside of under several full depth patch moderate to severe alligator of cracks and spalled areas and the median with a few low sever three has a small rut with low All three spans in the EB dire crack.	derate to poor condition with cracks and ow severity transverse cracks throughout the erity alligator cracking on the WB shoulder low severity patch in the median area. Span th patches with moderate to severe alligator were transverse cracking in the areas nety percent of the patches are in WB lane one of WB lane one in span two has plywood nes. The WB shoulder of span three has cracking, lane one has a few small surface there is a medium severity patch in the ity surface cracks. The EB lane one of span v severity alligator cracking near Abutment B. ection have a low severity joint reflective
TYPE OF TEST(S):	CORROSION SURVEY:	Shown in Exhibit 1, 2, and 3.
	CHLORIDE SURVEY:	Shown in Exhibit 1 and 2.
	BORING SURVEY:	Shown in Exhibits 1 and 2.
	TEST SITE LOCATIONS:	Shown in Exhibit 3.
	PACHOMETER SURVEY:	A pachometer survey was not performed.
	DELAMINATION SURVE performed.	Y: A delamination survey was not

BRIDGE DECK CODITION SURVEY BRIDGE DECK NO: 2108500 PAGE 2

RECOMMENDATIONS:

This recommendation is based on a materials evaluation. After a visual inspection was completed, we proceeded to perform a chloride and boring survey. Based on these evaluations, it is our recommendation that complete removal and replacement for the deck of this structure be done. Based on conditions existing at the time of testing and without rehabilitation the life expectancy of this deck is 0 to 3 years. The life expectancy of a bridge deck is the estimated time remaining before the deck becomes a safety hazard or a hindrance to traffic caused by continuous maintenance.

Prepared by: Al Hymiller

MARYLAND STATE HIGHWAY ADMINISTRATION FIELD EXPLORATIONS DIVISION BRIDGE DECK CONDITION SURVEY

- **BRIDGE NO:** 2202100
- LOCATION: US 13 Ramp 'C' over US 13/15
- DATE CONSTRUCTED: 1972
- **DATE TESTED:** September, 2013

TYPE OF STRUCTURE: Concrete girder, Steel girder bridge approximately 263 feet long 30 feet 6 inches wide having two abutments and three piers. These dimensions are based on the clear roadway width.

<u>TYPE OF SURFACE</u>: Bare concrete deck approximately 7.5 inches thick.

<u>OBSERVATION</u>: The deck appears to be in poor condition with numerous cracks throughout the entire deck surface and one very large patch in the travel lane. The underside of the deck that was exposed has cracking and efflorescence, the majority of the deck has stay in-place forms.

- TYPE OF TEST(S):CORROSION SURVEY:Shown in Exhibit 1, 2, and 3.CHLORIDE SURVEY:Shown in Exhibit 1 and 2.
 - **BORING SURVEY:** Shown in Exhibits 1 and 2.

TEST SITE LOCATIONS: Shown in Exhibit 3.

PACHOMETER SURVEY: A pachometer survey was performed on the existing bare deck sections to determine the minimum depth of concrete cover from the top of the existing bare deck to the upper layer of reinforcing steel. The depth of cover ranged from 1.0 to 3.0 inches with an average of 2.0 inches.

DELAMINATION SURVEY: A delamination survey was conducted and about 25 % of the deck is delaminated.

RECOMMENDATIONS: The following recommendations are based on a materials evaluation. We recommend rehabilitation for the deck of this structure. Rehabilitation would require the concrete to be removed to a minimum depth of 3.5 inches or to sound concrete and replaced with a high density nonporous concrete, to prevent moisture penetration. Additional concrete will need to be removed in the vicinity of test site WI-02, WI-09, WI-10, WI-11, WI-18, WI-20, and WI-22. The visual, corrosion survey, chloride survey and boring survey indicate this deck is in a deteriorated state and chloride contaminated. Based on conditions existing at the time of testing and without rehabilitation the life expectancy of this deck is 1 to 5 years. The life expectancy of a bridge deck is the estimated time remaining before the deck becomes a safety hazard or a hindrance to traffic caused by continuous maintenance.

Prepared by: Andre Pridgen

MARYLAND STATE HIGHWAY ADMINISTRATION FIELD EXPLORATIONS DIVISION BRIDGE DECK CONDITION SURVEY

STRUCTURE NO:	2202401	
LOCATION:	US 13 NB over MD-350	
DATE CONSTRUCTED:	1974	
DATE TESTED:	August, 2013	
<u>TYPE OF STRUCTURE</u> :	Steel beam, Concrete girder. Bu inches wide, with 2 abutments a the clear roadway width.	ridge approximately 140 feet long 39 feet 6 and 2 piers. These dimensions are based on
TYPE OF SURFACE:	Concrete deck approximately 8.	.0 inches thick.
OBSERVATION:	Spans 1 and 3 have longitudina one crack in each span that is a the shoulder at the abutments. may need attention also. Span that appear to be in good shape	al cracks running thru out. There is at least full depth crack and both of them are on The face of the abutment is cracked up and number-2 has metal stay-in-place forms
T <u>YPE OF TEST(S)</u> :	CORROSION SURVEY: S	Shown in Exhibit 1, 2, and 3.
	CHLORIDE SURVEY: S	Shown in Exhibit 1 and 2.
	BORING SURVEY:	Shown in Exhibits 1 and 2.
	TEST SITE LOCATIONS:	Shown in Exhibit 3.
	PACHOMETER SURVEY: the existing bare deck sections concrete cover from the top of reinforcing steel. The depth of inches with an average of 2.11	A pachometer survey was performed on to determine the minimum depth of the existing bare deck to the upper layer of cover on the NBR ranged from 1.5 to 3.0 inches.

DELAMINATION SURVEY: A delamination survey was conducted and about 35 % of the deck is delaminated.

BRIDGE DECK CODITION SURVEY BRIDGE DECK NO: 2202401 PAGE 2

<u>RECOMMENDATIONS</u>:

This recommendation is based on a materials evaluation. After a visual inspection was completed, we preceded to perform a chloride and boring survey. Based on these evaluations, we have concluded that deteriorated concrete should be removed along with its chloride contaminates. It is our recommendation that rehabilitation be done to this structure. Rehabilitation would require the concrete to be removed to a minimum depth of 3.5 inches or to sound concrete. However due to the high chloride content at the 5.0 inch level complete removal may need to be considered. Placement of a high density nonporous concrete should be used to prevent further moisture penetration. Additional concrete will need to be removed in the vicinity of test sites HO-01, HO-14, HO-16, and HO-22. Based on conditions existing at the time of testing and without rehabilitation the life expectancy of this deck is 0 to 3 years. The life expectancy of a bridge deck is the estimated time remaining before the deck becomes a safety hazard or a hindrance to traffic caused by continuous maintenance.

Prepared by: Al Hymiller

MARYLAND STATE HIGHWAY ADMINISTRATION FIELD EXPLORATIONS DIVISION BRIDGE DECK CONDITION SURVEY

STRUCTURE NO:	2202402
LOCATION:	US 13 S.B. over MD-350
DATE CONSTRUCTED :	1974
DATE TESTED:	August, 2013
<u>TYPE OF STRUCTURE</u> :	Steel beam, Concrete girder. Bridge approximately 140 feet long 39 feet 6 inches wide, with 2 abutments and 2 piers. These dimensions are based on the clear roadway width.
TYPE OF SURFACE:	Concrete deck approximately 8.0 inches thick.
OBSERVATION:	The concrete girder spans 1 and 3 have longitudinal cracks running the length of the spans. Several of these are full depth cracks. Span number-2 has metal stay-in-place forms that appear to be in good shape.
T <u>YPE OF TEST(S)</u> :	CORROSION SURVEY: Shown in Exhibit 1, 2, and 3.
	CHLORIDE SURVEY: Shown in Exhibit 1 and 2.
	BORING SURVEY: Shown in Exhibits 1 and 2.
	TEST SITE LOCATIONS: Shown in Exhibit 3.
	PACHOMETER SURVEY: A pachometer survey was performed on the existing bare deck sections to determine the minimum depth of concrete cover from the top of the existing bare deck to the upper layer of reinforcing steel. The depth of cover on the NBR ranged from 1.5 to 3.0 inches with an average of 2.2 inches.

DELAMINATION SURVEY: A delamination survey was conducted and about 30 % of the deck is delaminated.

BRIDGE DECK CODITION SURVEY BRIDGE DECK NO: 2202402 PAGE 2

RECOMMENDATIONS: This recommendation is based on a materials evaluation. After a visual inspection was completed, we proceeded to perform a chloride and boring survey. Based on these evaluations, we have concluded that deteriorated concrete should be removed along with its chloride contaminates. It is our recommendation that complete removal be done to the concrete girder spans 1 and 3 and rehabilitation for span-2. Rehabilitation for span-2 of the SB deck would require the concrete to be removed to a minimum depth of 2.5 inches or to sound concrete. Placement of a high density nonporous concrete should be used to prevent further moisture penetration. Based on conditions existing at the time of testing and without rehabilitation the life expectancy of this deck is 0 to 3 years. The life expectancy of a bridge deck is the estimated time remaining before the deck becomes a safety hazard or a hindrance to traffic caused by continuous maintenance.

Prepared by: Al Hymiller