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CHAPTER 1: INTRODUCTION  
 
RESEARCH PROBLEMS & BACKGROUND 

 

Every year the Maryland State Highway Administration (SHA) invests millions of dollars into 

testing geomaterials to optimize engineering designs. There is a significant opportunity for cost 

savings by leveraging historic material testing data with predicative machine learning models to 

provide estimated values as well as gaining a better understanding of the historical data in the SHA 

inventory. In Phase 1 of this research project, Office of Materials Technology (OMT) has 

implemented machine learning in the following areas: predicting tabular data (drilling, pavement, 

test data), object recognition (guide rail end treatments, blurry or under-exposed photos, etc.) and 

reinforcement learning for drilling project schedule data sets (schedule estimation). By leveraging 

on this incredible progress, this Phase 2 project identified more datasets where machine learning 

would be beneficial such as LiDAR DEM data and pavement marking retroreflectivity data. There 

are tremendous opportunities in implementing the machine learning methods in areas that 

traditional methods are labor intensive and time consuming such as drawing embankment 

polygons using LiDAR DEM data.  

 

Deep learning is a machine learning technique that allows computational models to learn the 

representation of massive and complex datasets without the need for explicit identification of 

prevalent features. Deep learning has recently been shown to outperform humans, in several fields 

such as computer vision and OpenAI’s ChatGPT. MDOT SHA’s massive amounts of engineering 

datasets as well as other data such as roadway and construction data have been accumulated over 

a long time period, which creates an excellent opportunity for establishing deep learning models 

to enable reliable prediction of engineering characteristics and other desired features from the 

massive datasets. There are many advantages of the machine learning-based approaches for field 

inspection/testing and imagery data modeling and prediction. Significant cost savings can be 

achieved by leveraging historical datasets and integrating with machine learning enabled work 

process. Recently machine learning algorithms have advanced rapidly; newer and more powerful 

machine learning models not available in previous applications and research in highway 

transportation fields are becoming available to address the challenging needs identified by OMT 

in design and construction, materials test data, management, operating optimization and field 
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inspection. If implemented, not only the material and condition characteristics of highway, and 

other transportation infrastructures can be estimated in the early phase of the project, but also 

scheduling/construction and maintenance can be optimized by data-driven decision making 

assistance enabled by accurate prediction with cutting edge machine learning methods and 

continual self-supervised learning of future incoming data. 

 

While we are implementing machine learning into various areas in the MDOT SHA OMT, there 

are still many areas that would greatly benefit from these tools. This research is aimed to optimize 

and apply state-of-the-practice machine learning algorithms and application tools to address the 

emerging needs in the above-stated OMT needs for better operation and management of MDOT 

SHA highway assets. In Phase 2 research, we implemented recent advance in machine learning 

methods, specifically, machine learning models for LiDAR DEM data based landslide risk 

assessment, slope/embankment detection for geotechnical asset inventory, scarp line detection, 

concrete compressive strength test data modeling and prediction, pavement marking 

retroreflectivity data modeling and deterioration condition prediction.  

 

RESEARCH OBJECTIVES 

 

This project is aiming to investigate and optimize cutting-edge machine learning models for 

identified MDOT OMT datasets and derive previous invisible relationships and trends within the 

historical data. Machine learning models can be utilized by providing design engineers with 

historic data-based predictions. These predictions will be implemented to generate more accurate 

preliminary designs, which will result in significant fiscal savings. These machine learning 

methods will also help ease delays in material testing by giving data requesters information that 

can be immediately utilized. It is imperative that we get these machine learning models in place to 

expedite the process of providing better preliminary data to MDOT SHA customers, thus 

improving customer service, fiscal savings, and reduced delays across all areas of OMT. Data size 

and quality is an important issue to ensure machine learning model performance and will thus be 

studied for the newly identified data as well. These models can be used to assist with the decision-

making process of MDOT SHA in project planning and construction.  
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Literature review will be performed for cutting edge machine learning algorithms optimal for 

newly identified datasets and application areas of interests to MDOT SHA. By leveraging on the 

progress made in Phase 1 project, we will identify more datasets where machine learning would 

be beneficial such as pavement marking retroreflectivity data. Different data formats including 

tabular datasets and images provided by MDOT SHA OMT office engineers will be investigated 

and processed (e.g., cleansing, filtering, filling missing values, feature identification and 

definition, imbalanced dataset remedy, etc.) for use by machine learning models.  

 

Cutting edge machine learning models will be developed for object detection and instance 

segmentation in LiDAR (Light Detection and Ranging) DEM (Digital Elevation Model) data and 

other raster image datasets. Machine learning can be utilized by the various OMT Divisions for 

object detection to provide initial data sets for slope distress area, embankment, pavement 

markings, small structures, and other items catalogued from existing ARAN Imagery. Machine 

learning algorithms have advanced rapidly and thus tremendous opportunities exist here in 

implementing machine learning methods for object detection performance improvement.  

 

Conduct case studies of additional highway datasets of interest to OMT including drilling data, 

geologic risk, concrete compressive strength test data and develop machine learning methods for 

these data. These machine learning models can be used and updated with new data to assist with 

the decision-making process of MDOT SHA in project planning and construction.  

 

RESEARCH APPROACH  

 

To achieve the objectives of this study, the following tasks were undertaken. This research 

considered the following seven types of datasets and corresponding machine learning algorithms 

for proper modeling of embedded data relations:  LiDAR DEM data, raster tiff images, drilling 

data, geologic risk, pavement marking retro-reflectivity, concrete compressive strength test data. 

A brief description of each machine learning method is given below and more details on why 

they were chosen can be found in the corresponding chapters of this report.   

 

Task 1. Project Management 
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The research team coordinated closely with MDOT SHA throughout the project in order to 

establish machine learning models for the selected highway datasets including machine learning 

models for LiDAR DEM data based landslide risk assessment (Task 2), instance segmentation 

based slope/embankment detection for geotechnical asset inventory (Task 3), instance 

segmentation based scarp line detection (Task 4), concrete compressive strength test data modeling 

and prediction (Task 5), pavement marking retroreflectivity data modeling and deterioration 

condition prediction (Task 6), and geotechnical drilling data (Task 7). In Tasks 5 to 7, 

oversampling method has been adopted to address the issue of data imbalance in the original 

datasets which results in increased accuracy in machine learning model prediction compared to 

previous results. Quarterly progress reports were prepared and submitted. Participation in project 

meetings coordinated by MDOT SHA with OMT staffs were attended regularly for machine 

learning model application needs and data requirements.  

 

Task 2: LiDAR DEM data driven machine learning modeling of highway landslide risk 

assessment 

The research team (here forth defined as UMD and MDOT team members) trained the highway 

landslide risk mapping and slope inventory. A geospatial machine learning model has been 

applied to assess the landslide risk in Maryland. Trained with historical slope failure data, the 

machine learning model includes LiDAR DEM data derived terrain feature variables and 

additional feature variables related to lithology, distance to roadways and streams. The model 

was applied to statewide 2-meter resolution LiDAR DEM data to generate the landslide risk 

map. Locations with risk score greater than 0.5 have been highlighted to inform engineers with 

increased landslide risk.  Random forest model was trained to predict for landslide risk at a given 

location in Maryland.  

  

Task 3: Instance segmentation machine learning model for embankment and slope polygon 

identification 

The research team reviewed machine learning methods for detecting embankment polygons for 

geotechnical cut slope and embankment asset inventory. Instance segmentation machine learning 

model was trained to automatically identify and draw the embankment polygons in arc gis pro. 

Slope raster tiff images created from state-wide 2-m resolution LiDAR DEM data were used for 
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machine learning model training. Hyperparameter tuning of machine learning model such as 

training image size and training epoch numbers were performed to obtain the optimal model for 

embankment polygon identification. Validation of the machine learning identified embankment 

polygons were made by comparing with embankment inventory data provided by MDOT SHA. 

The research team also did literature review of recent publications in this field to ensure the 

adopted instance segmentation model has the state of art performance.  

 

Task 4: Instance segmentation machine learning model for slope scarp identification 

The research team developed and tested machine learning model for detecting scarp lines in arc 

gis pro. Instance segmentation machine learning model was trained to automatically identify and 

draw the scarp lines. Surface parameter slope raster tiff images created from state-wide 1-m 

resolution LiDAR DEM data were used for machine learning model training. Hyperparameter 

tuning of machine learning model such as training image size, image pixel depth and training 

epoch numbers were performed to obtain the optimal model for scarp line identification. 

Machine learning identified scarp lines were compared with the nventory scarp line data 

provided by MDOT SHA.  

 

Task 5: Developing Machine Learning model for concrete strength test datasets 

The research team trained neural network machine learning model for concrete compressive 

strength predictions by utilizing historical data from thousands of historic concrete strength tests 

with various mix design and concrete placement variables. Data cleanup was conducted to ensure 

that only the most reliable data was used in training a tabular neural network regression model. 

The model prediction yields a R2 value equal to 0.87 when tested on validation data. 

 

Task 6: Developing Machine Learning model for pavement marking retroreflectivity data 

The research team also utilized Laserlux collected pavement marking retroreflectivity data to 

develop machine learning regression models and performed training for various marking 

materials prediction. Feature variables include county, route number, age, materials and AADT. 

Shapefile for the data frame was created for visualizing the geospatial distribution of pavement 

marking data in Arc gis pro. The use of pavement marking retroreflectivity machine learning 

model for condition deterioration model was also demonstrated.  
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Task 7: Developing machine learning model for geotechnical drilling data 

The research team trained tabular data neural network models for various geotechnical drilling 

datasets, including locations, geology, elevation, major soil constituent, layer depth, groundwater 

table depth, SPT N-Value ranges, and bedrock depth. The resulting model is fully implemented 

and is utilized as part of the soil boring request process in MDOT SHA. The tabular data neural 

network model is current and has been updated for the drilling data based on parametric study of 

hyper-parameter values. Tuning the machine learning model for optimal hyper-parameter values 

was conducted. Comparison of the predicted results from Fast.ai neural network model and true 

value was also made by calculating the corresponding confusion matrices and plotting a scatter 

plot in this study.  

 

Task 8: Final Report 

The research team developed this final report that includes all deliverables and analyses as 
described in Tasks 1 to 7.  
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CHAPTER 2. LIDAR DEM DATA DRIVEN MACHINE LEARNING MODELING OF 
HIGHWAY LANDSLIDE RISK ASSESSMENT 
 
The objective of this task was to train geospatial machine learning models to assess the landslide 

risk in Maryland. Random Forests machine learning algorithm is used to predict the probabilistic 

landslide occurrence likelihood over a large area along the road network in the state of Maryland. 

Trained with historical slope failure data, the machine learning model includes LiDAR DEM 

data derived terrain feature variables and additional feature variables related to geology, distance 

to route and cost distance to streams.  The model was applied to statewide 2-meter resolution 

LiDAR DEM data to generate the Maryland landslide risk map. Locations with risk score greater 

than 0.5 have been highlighted to inform engineers with increased landslide risk.   

 

In this study, the research team reviewed raster image data based Random Forest model training 

and predictions for landslide risk mapping. Random Forest classification machine learning model 

has been used to predict the probabilistic landslide mapping by Maxwell et al. (2020). Random 

Forest classifier is an ensemble tree-based learning algorithm that consists of many decision trees 

from randomly selected subset of training set. It aggregates the votes from an uncorrelated forest 

of decision trees to predict the class. Random Forest is thus a nonparametric, ensemble decision 

tree (DT) method capable of accepting continuous and categorical predictor variables to perform 

classification, regression and make probabilistic predictions. Random forest has many positive 

attributes for predictive modeling including its ability to accept a variety of input predictor 

variables that may be correlated and/or scaled divergently. Also, it is generally robust to complex 

feature space, can be trained quickly, can accept categorical predictor variables and can provide 

an assessment of variable importance based on the withheld or out-of-bag, data in each tree 

(Breiman 2001). 

 

The random forest algorithm has been applied to many mapping and spatial predictive modeling 

tasks with remotely sensed and/or geospatial data as input (e.g. Youssef et al. 2016). It has also 

been used extensively to obtain probabilistic predictions as opposed to classification products. 

Maxwell et al. (2020) recently implemented the Random Forest algorithm for predicting the 
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probabilistic mapping of landslide occurrence or susceptibility in West Virginia. This Random 

Forest modeling approach was also adopted for this study of landslide risk assessment in 

Maryland. The initial training data consisting of a total of 1,798 slope failure samples was 

provided by the West Virginia University team listed in the reference by Maxwell et al. (2020), 

in which the details of their model can be found. Through integration of machine learning and 

geospatial predictive modeling, landslide probability maps are generated in this study to 

visualize where slope failures are likely to occur along the Maryland highway routes.  

 

 

Figure 1. Framework of raster-image based landslide risk machine learning model 

LiDAR (Light Detection and Ranging) is an active remote sensing method that relies on laser 

range finding. Using the two-way travel time of reflected laser pulses detected by the sensor, 

GPS (global position system) locations, and aircraft orientation and motion from an inertial 

measurement unit, horizontal and elevation coordinates of the reflecting surface can be estimated 

at a high spatial resolution. Further, a single laser pulse can potentially result in multiple returns, 

allowing for vegetation canopy penetration and the mapping of subcanopy terrain, in contrast to 

other elevation mapping methods such as photogrammetry method (Maxwell et al. 2020). 

LiDAR data have been applied to a variety of terrain mapping and analysis tasks. For example, 

many studies have investigated the mapping of slope failures, such as landslides, using terrain 

variables derived from LiDAR (e.g., Ardizzone et al. 2007, Jaboyedoff et al 2012, Van Den 

Eeckhaut et al 2012). Another common application is modeling the likelihood of slope failure 

occurrence or landslide risk (Maxwell et al. 2020). In a review of the use of LiDAR in landslide 

investigations, Jaboyedoff et al. (2012) suggest that LiDAR is an essential tool for landslide risk 

management and that there is a need to develop methods to extract useful information from such 
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data. In this study, LiDAR DEM data has been used to generate a variety of terrain feature 

variables for the landslide risk machine learning model. DEM (digital elevation model) is a 

digital representation of the earth’s topographic surface in which surface features like buildings 

and vegetation have been removed.  A high-resolution DEM can be derived from LiDAR point-

cloud data by stripping away the surface features and sampling the ground elevation in uniform 

increments to produce a bare earth model (USGS).  

 

Previous research works (Goetz et al. 2015; Maxwell et al. 2020) suggest that terrain variables 

are highly important in predicting landslide occurrence and susceptibility. Goetz et al. (2015) 

also suggest that empirical or trained models that incorporate terrain variables often outperform 

physical models that attempt to model slope failure susceptibility based on physics based 

understanding of the slope stability problem.  

 

The current machine learning model adopted here for landslide risk assessment incorporates a 

total of 35 features (among which 23 features generated from Python script in acr gis pro, 9 

features generated from R script in R geospatial analysis package, and 3 feature created from arc 

gis pro). The following 23 terrain variables are derived as the outputs from Python scripts in arc 

gis pro: Slope Gradient (slp), Slope Position (sp 3), Topographic Roughness (tr or rph 3), 

Topographic Dissection (td or diss 3), Mean Slope Gradient (SlpMn 3), Site Exposure Index 

(sei), Heat Load Index (hli), Linear Aspect (LnAsp), Surface Relief Ratio (srr 3), Surface Area 

Ratio (sar), Profile Curvature (PrC 3). Those features with 3 in the parenthesis are further 

divided into three individual features with different window sizes for averaging purpose. The 

following additional nine terrain variables are derived from R package and also used for the 

landslide risk machine learning model: Plan Curvature (Plc 3), Cross-Sectional Curvature (csc 

3), Longitudinal Curvature (LnC 3). The importance ranking of the corresponding feature 

variable to the landslide risk assessment model are shown as the number in the parenthesis: slp 

(1), sp1 (21), sp2 (27), sp3 (32), rph1 (tr1, 7), rph2 (tr2, 23), rph3 (tr3, 22), diss1 (td1, 6), diss2 

(td2, 24), diss3 (td3, 34), slpmn1 (12), slpmn2 (16), slpmn3 (18), sei (13), hli (42), asp_lin 

(LnAsp, 11), srr1 (4), srr2 (28), srr3 (36), sar (2), proCrv1 (PrC, 10), proCrv2 (30), proCrv3 (20), 

tanCrv1 (csc, 3), tanCrv2 (15), tanCrv3 (35). The number after the letters in the abbreviated 

feature variable name refers to the window size for averaging the corresponding feature variable. 
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For example, sp1, sp2, and sp3 has the average slope position value based on a window size of 

7x7, 11x11 and 21x21 cells respectively. Each cell in the raster image measures 2 m x 2m since 

2-m resolution LiDAR DEM data was used for this task.  

 

As demonstrated in the study by Maxwell et al. (2020), the most important five variables in the 

model are topographic slope (Slp), surface area ratio (SAR), cross-sectional curvature (CSC), 

surface relief ratio (SRR) and plan curvature (PlC). In addition to the terrain feature variables, 

the machine learning model in this study also considers non-terrain variables, such as variables 

relating to Geomorphic Presentation or lithology (lith, 17), distance to nearest road (USD), and 

cost distance to streams (StrmC, 19).  

 

 

Figure 2. Lithology map of Maryland (1= low relief carbonates, 2 = low relief mudrock, 3= 
major ridge formers, 4= Moderate or variable quartzose ridge formers, 5= Moderate relief clastic 
rocks, 6= others, 7= Shaley units with interbedded sandstone) 

The lithology map for Maryland was downloaded from the USGS website (www.usgs.gov) and 

saved into raster tiff files. Since there are 34 different rock types present in the Maryland 

lithology map downloaded from the USGS lithology data, a procedure in arcgis pro was 

developed by the UMD team to generate the statewide lithology map raster tiff data compatible 

with the lithology classification scheme in the original model. The lithology map used for this 

study is shown in Figure 2.  ‘Distance to nearest roads’ feature variable has also been included in 

the current landslide risk machine learning model. Tile raster files have been extracted from 

http://www.usgs.gov/
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Maryland highway routes shape file. Euclidean Distance feature layer were created by Euclidean 

distance function. A sample cost distance to nearest stream map is shown in Figure 3 for Anne 

Arundel County.  

 

 

Figure 3. Map of cost distance to streams of Anne Arundel County 

Generated machine learning model required features input raster data for each county in 

Maryland, and established baseline estimation of computing and storage resource requirements 

for statewide landslide risk map production. To compute the features, the running time for R 

script ranges from 40 min to 1 h for each tile, the running time for all 57 tiles in Washington 

(WA) County is estimated to be 50 hrs. The trained model provides a f1-score of 0.86 for each 

landslide risk/non-landslide risk category (20% data was used for the validation test). The 

prediction results for each tile is visualized in the raster image of landslide risk map, as shown in 

the developed landslide risk maps for WA, AL and GA county in Figure 4 below.  
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Table 1. Computing information for Anne Arundel County landslide risk map generation 
ML model feature 
variables 

Raster Data 
size 

Computing time 
(hours) 

Software Package 

Python Features 61.3 GB 15 Arcgis pro toolbox, ArcPy 

R Features  15.6 GB 4 R scripts for geospatial analysis 
(SAGA, spatialEco package) 

Lithology 30.2 MB - Arcgis pro  

Distance to Road 1.82 GB - Arcgis pro  

Cost Distance to 
Stream 

1.12 GB - Arcgis pro  

 

 
Figure 4.  landslide susceptibility map of western four counties (GA, AL, WA) in Maryland 

Steps to generate the risk map are listed as follows: 1. The DEM raster tiff file for the considered 

county was extracted from the statewide 2-m resolution LiDAR DEM file (elevation unit is foot). 

2. Computing the geographical features in Arc gis pro, R studio and Jupyter notebook. 3. Train 

the Random Forest machine learning model for landslide risk assessment in Jupyter notebook. 4. 

Predict the confidence score by Py spatial machine learning module in Jupyter notebook. Table 1 

above summarizes the computing time and data storage requirements for three major steps of 

Anne Arundel (AA) County landslide risk map generation based on a Dell Optiplex 9020 

desktop computer with 3.6GHz Intel Core i7-4790 and CPU memory of 32 GBytes. The original 
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R code was updated by removing unused codes to shorten the computational time. ArcGIS pro 

2.7 version was used.   

 
 
 
Figure 5. Machine learning generated landslide risk map of Prince George County 
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Figure 6. Machine learning generated landslide risk map of Anne Arundel County 
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CHAPTER 3. INSTANCE SEGMENTATION MACHINE LEARNING MODEL FOR 
EMBANKMENT AND SLOPE POLYGON IDENTIFICATION 
 
The objective of this task was to train machine learning models for automated detection of 

highway embankments and corresponding polygon generation using raster image instance 

segmentation method. Literature review of image object detection methods was first carried out 

for embankment polygon generation to identify the cutting-edge machine learning algorithm and 

software tool for this task. Statewide LiDAR DEM data was used to for this purpose.  

 

 

Figure 7. Flowchart of embankment and slope polygon detection using machine learning method 

 

The instance segmentation tool in arc gis pro was used to develop the machine learning 

(specifically instance segmentation method) model for highway embankment polygon 

identification. Additional Python scripts were developed to calculate certain features (e.g., slope 

sectional height difference from transect lines, area, etc) and apply composite machine learning 

models (by combining tabular data models) to post-process the detected embankment polygon 

datasets such as removing those embankments with projected area smaller than a given value 

(e.g., 1000 square foot). Other post-processing works of the identified polygons include 

generating transect lines along the Maryland highway (IS, US, MD routes) road network 

centerlines and developing python scripts to calculate the maximum sectional height difference 

for each intersected transect line segment and the corresponding embankment polygon, as well as 

generating embankment polygon attribute table for summary. Fine-tuned instance segmentation 

machine learning models were developed in second cycle with those embankment polygons 

MD SHA embankment 
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ML training

Detected Polygon 
candidates
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Filtered  by 
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implementation
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obtained and post-processed from the first-cycle implementation of the machine learning model, 

as shown in Figure 7.  

 

Deep learning is a machine learning technique that allows computational models to learn 

representation of massive and complex datasets without the need for explicit identification of 

prevalent features. Deep learning has recently been shown to outperform humans, in several 

fields such as computer vision and pattern recognition (Bengio et al. 2021). Combination of deep 

learning with high-resolution LiDAR DEM data creates an excellent opportunity for establishing 

machine learning models to automate and enable reliable prediction of surface features such as 

highway embankment and scarp distress areas in cut slopes. Instance segmentation can be 

viewed as a combination of semantic segmentation and object detection. Whereas an object 

detection system coarsely localizes multiple objects with bounding boxes, Instance segmentation 

produces a segment map of each category as well as each instance of a particular class, therefore, 

providing a more meaningful inference on an image.  Object detection involves identifying the 

presence, location, and type of one or more specified objects in a given picture or video images. 

It builds upon methods for object recognition, object localization, and object classification. In 

recent years, deep learning techniques are achieving state-of-the-art results for object detection, 

such as on standard benchmark datasets and in computer vision competitions. Notable is the 

“You Only Look Once,” or YOLO, family of Convolutional Neural Networks that achieve near 

state-of-the-art results with a single end-to-end model that can perform object detection in real-

time (Redmon and Farhadi 2018).  

 

For object detection algorithm, the whole system can be divided into two major components: 

Feature Extractor and Detector; both are multi-scale. When a new image is loaded for object 

detection, it goes through the feature extractor first so that we can obtain feature embeddings at 

three (or more) different scales. These features are fed into three (or more) branches of the 

detector to get bounding boxes and class information. Inspired by ResNet and FPN (Feature-

Pyramid Network) architectures, the feature extractor of Yolo v3 uses is Darknet-53, which 

contains skip connections (like ResNet) and 3 prediction heads (like FPN); each processing the 

image at a different spatial compression (Redmon and Farhadi 2018). ResNet brought the idea of 

skip connections to help the activations to propagate through deeper layers without gradient 
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diminishing (He et al. 2015). Darknet-53 borrows this idea and successfully extends the network 

to 53 layers. In object detection, a detection head follows after this feature extractor. 

Convolutional neural network (CNN) is also used in the object detection algorithm. The 

convolution/pooling layers before the final densely connected neural network, are there to extract 

and abstract patterns from the input data, in another word, engineer features that are useful for 

the prediction task. However, in more challenging dense prediction tasks such as pixel-level 

object detection or long-term prediction, both global and local information are needed for 

accurate prediction, requiring larger receptive fields. Two naive approaches to expand the 

receptive field are to deepen the network and to enlarge the filters (Redmon and Farhadi 2018). 

The former introduces computational and optimization difficulties due to problems of exploding 

vanishing gradients, hyper-parameters tuning, and memory explosion. The latter drastically 

increases the model complexity, making the already expensive training on dense prediction more 

challenging.  

 

 

Figure 8. Slope composite band raster image of Washington County 

 
 
This study combines the Mask R-CNN and LiDAR for detecting the embankment features from 

slope raster imagery data as shown in Figure 8. Specifically the Mask R-CNN method is 
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implemented. This method is an extension of faster R-CNN, which allows for convolution to be 

applied on regions of the image as opposed to the entire scene. This involves generating 

convolution feature maps that are then applied to individual subsets of the image, called regions 

of interest (RoI), defined by the region proposal network (RPN) (Maxwell et al. 2020). Large 

training datasets including a variety of embankment and slope features for calibrating and 

validating machine learning methods have been created in the first cycle of training, which were 

then used for the second round of machine learning model training in this study. Region-based 

Convolutional Neural Network (RCNN) model was utilized to detect the slopes. This method is a 

deep learning instance segmentation technique that performs pixel-level segmentation on 

detected objects. Since 2-m resolution LiDAR DEM data was used to create the slope raster 

images, each cell (or pixel) of the raster tiff image measures 2m x 2m in space. This instance 

segmentation model has been trained for 3-categories classification so that embankment, soil cut 

slope and rock cut slope can be explicitly identified. ResNet with 50 layers was used for the 

instance segmentation model.  

 

The first round embankment detection machine learning model used training chips generated 

from the original embankment inventory data provided by MDOT SHA. A total of 11,884 

training chips were generated for the consolidated dataset. Each training chip size is 256x256, 

which corresponds to 512m x 512m in space since 2-m resolution LiDAR DEM data was used to 

create the slope raster images. A sample training chip is shown in Figure 9 below. For the 

embankment polygons identification in Arc gis pro environment using the machine learning 

method, the training dataset was augmented by appending the initial training chips dataset with 

5,000 rotated training chips (45-degree data augmentation) from the three western counties (GA, 

AL, WA) in Maryland and re-trained embankment detection model with this expanded training 

dataset. The consideration for choosing the three western counties only for rotation augmentation 

are two: (1) those highway roads in the region run mostly in east-west direction so rotation 

augmentation of the corresponding embankment and slope polygons would provide helpful 

information in training machine learning model; (2) there are many slope polygons in this region 

due to its mountainous terrain feature and adding these polygons in rotated orientation would 

also help with the qualify of the entire training dataset.  
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Figure 9. Sample training chip with a 256x256 cell size for embankment detection model 

 

 
Figure 10. Embankment polygon mapping with training chip rotation augmentation 

This machine learning method can automatically detect and draw the outlines of desired 

embankment polygons with regular shapes and smooth edges as shown in Figure 11. The 
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embankment detection procedure includes the following steps: 1. Importing the raster file of the 

training region; 2. Importing the vector shape file of the training polygons; 3. Importing the 

vector shape file of the mask of the training region (e.g., Washington county border); 4. Creating 

slope shade raster of the raster file using the “slope” tool in Arc gis pro; 5. Converting the raster 

to 8-bit unsigned format using the “copy raster” tool in Arc gis pro; 6. Creating a 3-band image 

from the converted raster; 7. Creating the training images using the “export training data for deep 

learning” tool in Arc gis pro. 8. Train the machine learning model for embankment polygon 

detection using the “train deep learning model” tool in Arc gis pro. Typical epoch number is 20 

to 30 based on trial and error test of this case study. A sample training loss curve is shown in 

Figure 12. Batch size is set to be 8. 9. Detecting the objects in the study area using the “detect 

object using deep learning” tool in Arc gis pro. Threshold confidence score value can be adjusted 

to generate more embankment polygons. For example, by decreasing the threshold to 0.5, more 

polygons are detected at some locations, as shown in Figure 13.  

 

 

Figure 11. Embankment polygons detected using the Instance Segmentation method at a location 
in Washington County along Highway I-70 
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Figure 12. Sample training loss curve for the embankment detection machine learning model 

 
 

 
 

b. Threshold confidence score: 0.7 c. Threshold confidence score: 0.5 

  
Figure 13. Comparison of machine learning generated embankment polygons with inventory data 

a. Embankment polygons from initial 
inventory dataset 
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The detected polygons from the first round training model predictions were filtered by applying a 

minimum requirement of 10-ft sectional height (elevation) difference, 1000 sq. ft. minimum 

(projected horizontal plane) area and 0.6 confidence score output for the machine learning model 

prediction. The detected embankment/slope polygons were further post-processed after filtering, 

including applying dissolve tool, multipart to single part break down, non-gap union tools. Table 

1 and Figure 14 show the amount and distribution of filtered polygons from first round machine 

learning model detected embankment and slope polygons.  

 

Table 2. Number of filtered polygons from first-cycle machine learning prediction appended to 
MDOT SHA inventory dataset to make the slope-type dataset more balanced for training 
 
 Initial Inventory 

Data 
First-cycle ML 
Prediction (Confidence 
score > 0.6) 

Added Samples with 
adjusted passing 
confidence score 

Final balanced 
dataset 

 
Embankment 758 2758 538 (CS ≥ 0.92) 1296 
 
Soil cut slope 342 931 520 (CS ≥ 0.75) 862 
 
Rock cut slope 531 241 241 (CS ≥ 0.6) 772 

Note: ML = machine learning 
 

 

Figure 14. Histogram of the filtered polygons from first-cycle machine learning detected 
embankment and slope polygons 
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Post-processing of machine learning model detected embankment polygons is critical to creating 

a high-quality training dataset that can be used for second round machine learning model 

training. The polygons drawn by instance segmentation are further filtered by applying 

confidence score threshold (≥ 0.6) and transect line based elevation difference (≥ 10 ft). 

Dissolve and non-gap union tools were applied to candidate polygons to remove the overlapped 

polygons and fill void and holes of the polygons in acr gis pro. Multipart to single part tool was 

also applied to separate the polygons and spatial join was applied to attach attribute features for 

the processed polygons. Area filter (> 1000 sq. ft) was applied to remove small non-embankment 

polygons. Dissolve tool is applied to connect polygons for the same embankment. Figure 15 

below shows the embankment polygons before and after applying these post-processing steps.  

 

 

 

 
(a) 

 

(b) 

Figure 15. Comparison of embankment polygon (a) before post-processing; (b) after post-
processing 
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In developing embankment mapping method based on image instance segmentation and 

embankment polygons generation, 1/1000th mile marker transect lines were generated for the 

polygons of MDOT SHA embankment inventory and appending 1/1000th mile marker attributes 

to the machine learning detected embankment polygon dataset, as shown in Figure 16. 1/1000th 

mile marker transect lines along the IS, US and MD routes were generated for the embankment 

polygons using the Pairwise intersect tool in arc gis pro. There are a total of 1,040,025 intersect 

line generated. Zonal statistics along intersect lines applied to 1/1000 intersect lines to calculate 

elevation difference.  

 

 

Figure 16. Joining the 1-ft transect line attributes with 1000-ft transect lines to assign each 
transect line with route mile point 

 

The instance segmentation model trained with the original inventory dataset for embankments 

and slopes in Maryland was applied to the statewide 2-m LiDAR DEM generated slope raster 

data. The UMD team also cleansed and post-processed the detected polygons, quality check was 

also done for the predicted embankment polygons with parameter study and tuning. After 

applying post processing to machine learning model outputs and attribute filter, a total of 5,685 
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polygons were identified and added to the new training dataset for next phase machine learning 

model training. It is worth noting that the total number of embankment polygons selected for 

training can be further increased if needed by lowering the confidence score threshold so more 

polygons can be included. The updated embankment polygon dataset for second-cycle machine 

learning model training was then used for retraining and the retrained machine learning model 

was applied again to detect embankment with the 2-m resolution statewide LiDAR DEM dataset.  

 

In order to calculate the sectional height difference and mile-point labeling for the corresponding 

embankment, the intersection line segment between the 1/1000 mile transect lines and identified 

embankment polygons was generated in arc gis pro, as shown in Figure 16. The maximum and 

minimum elevation along each transect line segment (i.e. only the segment inside the 

embankment polygon) were then determined from the LiDAR DEM raster images by using the 

zonal statistics tool in arc gis pro. The shapefile of Maryland 1/1000 milepoint marker data was 

used for this purpose. 1-ft and 1000-ft long transect lines are generated along the Maryland road 

networks (including all IS, US, MD and RP routes). Figure 16 shows the mile point markers 

attached to 1-ft transect lines and joining the 1-ft transect line attributes with 1000-ft transect 

lines.  

 

Additional python scripts were developed in this study to calculate several desired features (e.g., 

projected area of embankment, bridge linear intersection, etc.) for the highway embankment 

polygons identified from instance segmentation model using LiDAR DEM data and combined 

tabular machine learning models for embankment polygon filtering. For the embankment 

polygons identification in Arc gis pro, machine learning derived embankment polygon 

intersection with Maryland bridge linear was performed, and a polygon cutting method was 

developed to slice apart the polygons at bridge. Embankment polygon datasets were further 

processed by filtering out those unwanted polygons (e.g., near river banks) and applying bridge 

linear slicing to remove the embankment polygon portion under bridge deck based on the 

embankment polygons detected from 2-m resolution LiDAR DEM data.  
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Table 3. Comparison of instance segmentation machine learning model detection results 
(confidence score ≥ 0.4) 
 ML Model w/o 3 

county rotation 
ML Model w/ 3 
county rotation 

ML Model w/ 5000 images 
from 3 county rotation 

# of Embankment 
polygons 

46500   18593 55044 

# of Rock cut 
slope polygons 

13612 5096 13444 

# of Soil cut slope 
polygons 

9208 5300 8453 

ML = machine learning 

 

A 45-degree rotation augmentation was applied to three western counties (GA, AL and WA) 

polygons to improve machine learning model performance. Training chip inventory for polygons 

with such rotation augmentation has 25,484 samples and is larger than the original training 

dataset. Two new machine learning models were created: one trained with all rotation 

augmentation data, the other one trained with 5000 training chips randomly picked from all 

rotation augmentation raster chips. The instance segmentation machine learning model was 

trained with the original pre-trained weights. The model with 5,000 rotation chips has an average 

precision score over 0.4 for each category. Figure 17 shows samples of instance segmentation 

machine learning model detected embankment and slope polygons with and without rotation 

training chips.  

 

According to the machine learning model detection quantity results in Table 4, the instance 

segmentation model with additional 5000 rotation augmentation training chips can detect more 

embankment polygon candidates than the other two instance segmentation models. There are 

25,123 polygons left after applying the dissolve and union tool, filtered by only keeping those 

polygons with a 1200ft-wide buffer zone along the highway centerline. The filtering confidence 

score threshold for this machine learning model detection is set to be 0.4, therefore, only those 

embankment or slope polygons with confidence score ≥ 0.4 are kept. Additional filtering criteria 

include the following: Maximum sectional elevation difference of the embankment polygon ≥ 10 

ft; Embankment Projected Area ≥ 1000. By applying the elevation difference filter along the 

transect lines using the 1/1000th mile marker shapefile: ≥10ft filter yields 1,650 polygons; ≥15ft 

filter yields 1,558 polygons. Comparing with the 1/100 mile maker intersect line: ≥10ft filter 
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yields 1,631 polygons;  ≥15ft filter yields 1,541 polygons. Therefore, 19 polygons were added to 

the 10-ft filter case, while 17 polygons were added to the 15-ft filter case when 1/1000th mile 

marker shapefile was used in comparison with 1/100th mile marker shapefile.  

 

Table 4. Quantity of embankment polygons after post-processing and filtering (confidence score 
≥ 0.4) 
Maximum sectional elevation difference 

threshold of embankment/slope polygon 

Total quantity of detected 

embankment/slope polygons 

5 ft 14,537 

10 ft  11,337 

15 ft  8,749 

 

 
(a) 

 
(b) 

 
(c) 
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Figure 17. Comparison of machine learning model detection embankment/slope polygon samples: 
(a) w/ 5000 chips randomly selected from three western counties (GA, AL and WA) rotation 
augmentation; (b) w/ all rotation augmentation training chips for three western counties; (c) 
without rotation augmentation chips 

 
The embankment candidate polygons are intersected with the Maryland bridge linear features, 

those polygons will be cut by straight line perpendicular to the bridge linear line at the intersection 

edges, as shown in Figure 18. It was found that only 220 out of 11,038 detected embankment 

polygons intersected with the Maryland bridge linear features. The embankment candidate 

polygons were sliced and divided by the bridge linear features with buffer zone of its width equal 

to the bridge deck width given in the Maryland bridge linear dataset. Sample embankment 

polygons sliced apart by bridge linear feature are shown in Figure 18.  

 

 
(a) 

 
(b) 
 
Figure 18. Slicing machine learning model detected embankment polygon with bridge linear 
feature: (a) Polygon before cutting by bridge buffer polygon; (b) Polygons after cutting 

 
Detection on the 2-m resolution statewide LiDAR DEM for first cycle model with the updated 

inventory dataset was performed with a total computing time of 17 hours 45 minutes. Total 
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polygons detected from first cycle machine learning model detection are 69,320 and the number 

of detected polygons with confidence score over 0.6 is 34,999; Additional polygon candidates 

were detected from applying the second round embankment detection machine learning model to 

the updated training dataset. Figure 19 compares the embankment polygons detected by second 

round machine learning model with those from first cycle machine learning model detections.  

 

 
(a) 

 
(b) 
 
Figure 19. Embankment Detection by second round ML model: (a) detected polygons in 2nd 
round ML model; (b) training dataset from 1st round ML prediction 

 

 
(a) 
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(b) 
Figure 20. Sample embankment polygons detected from 2nd round machine learning model 

 

 

 
Figure 21. Machine learning model detected embankment polygon post-processing: Attaching 
1/1000th mile marker milepoints attribute 
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For the embankment polygons identification in Arc gis environment using machine learning 

method, UMD team manually checked the machine learning predicted embankment polygon 

inventory with confidence threshold of 0.4, attached the route ID and starting and ending 

1/1000th milepoints feature to the detected embankment/slope polygon. The attribute fields 

corresponding to the inventory data were added to the detected polygon attribute table. The route 

ID format in the detected embankment polygon attribute table were updated and thus route_ID 

has been updated with the new criteria as shown in Table 4.  

 

 
Figure 22. Training loss curve from training embankment detection machine learning model 
using the 1-m resolution Washington County LiDAR DEM data 

 
Figure 23. Sample machine learning detected embankment and slope polygons using 1-m 
resolution LiDAR DEM data at Washington County 
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Additionally, UMD team also tested a new embankment detection machine learning model 

training and prediction with 1-m resolution Washington County LiDAR DEM data. Two 

different training chip sizes (256 x 256 cells, and 512 x 512 cells). The 512x512 training chips 

were considered to match the same spatial dimension of those 256x256 training chips created 

from 2-m resolution LiDAR DEM data. It was found that the 1-m resolution LiDAR DEM data 

contains too many local features and thus machine learning model trained from this higher 

resolution LiDAR DEM data (compared with 2-m resolution DEM data) also captures undesired 

patches in the mountain area not related to embankments. Due to increased spatial resolution 

associated with the 1-m resolution LiDAR DEM data, computing time and resources 

requirements (e.g., GPU memory requirements) are significantly increased. Therefore, it was 

determined that for embankment/slope detection, using 2-m resolution LiDAR DEM is sufficient 

and should be adopted for this task.   

 

MDOT SHA conducted a manual review of all slopes to refine the resulting polygons to those 

most relevant to highway asset management and risk analysis.  Several polygons were eliminated 

where they do not relate to highways maintained by MDOT SHA or are not on the National 

Highway System.  Many of the removed polygons were identified related to slopes for railroads, 

county-maintained highways, urban retaining walls, and other property within the analysis buffer 

but not related to highways.  Ultimately, this analysis assisted MDOT SHA with adding 8,627 

new slopes to the geotechnical asset management inventory, comprised of 5,727 additional 

embankments, 505 Additional Rock Cuts Slopes and 2,395 additional soil cut slopes. 
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CHAPTER 4: INSTANCE SEGMENTATION MACHINE LEARNING MODEL FOR 
SLOPE SCARP IDENTIFICATION 
 
The research team also investigated the image instance segmentation method for slope scarp line 

mapping and machine learning-enabled automated scarp polylines generation in arc gis pro. A 

higher (1-m) resolution statewide LiDAR DEM data was used for this task because high spatial 

gradient value typical of scarp distress area.  Surface parameter slope tiff raster images were 

generated from the 1-m resolution LiDAR DEM data for the area and the training chips with 3-m 

wide scarp line polygons were created from the initial scarp line inventory data provided by 

MDOT SHA. The scarp polygon identification instance segmentation machine learning model 

was trained using the inventory scarp line data. The trained scarp line detection machine learning 

model was subsequently applied to 1-m resolution statewide LiDAR DEM data to detect scarp 

polygons in Maryland. The research team also performed parametric study for the machine 

learning model to determine its optimal hyper-parameter values. To further fine-tune the 

machine learning model, the zonal statistic tools in acr gis pro were applied to calculate the 

terrain features for the 3-m wide scarp line polygons, and their distributions were visualized with 

plotted histograms. 

 

 

Figure 24. Flowchart of machine learning-enabled automated scarp polylines generation 

The MDOT SHA provided the initial scarp line inventory dataset which contains 1,438 polylines 

representing scarp lines distributed over the entire Maryland state. Sample scarp lines are shown 

in Figure 25 below. To use the instance segmentation machine learning model for scarp line 

polygon detection in Arc gis pro, the UMD team first converted the scarp polylines into scarp 

line polygons for machine learning training data generation. Scarp line polygons are created from 

scarp line (located as the center line of the polygon) with a given buffer width. Three different 

buffer width values (2m, 3m, 4m each side of scarp line as buffer width respectively) were 

considered (shown in Figure 25 below) and instance segmentation machine learning model for 

varying width scarp polygons from the four western counties (GA, WA, AL and FR counties) 

were trained based on 1-m resolution statewide LiDAR DEM data. The scarp line dataset 

Training chips 
generation

RCNN model 
training 

Scarp Line 
detection
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including 660 scarp lines were from the four western MD counties (GA, AL, WA, FR county). 

The first round machine learning model only includes scarp line polygons from the four western 

Maryland counties (GA, AL, WA, FR) and the detection is done using the slope raster tiff 

images.  

 

 

Figure 25. Scarp line polygons with three different buffer width values (2m, 3m, 4m) for 
machine learning enabled scarp line detection 

45-degree-increment rotation augmentation was also applied to expand the training data size 

from 1k to over 9k. Rotation augmentation would also help improving the machine learning 

model performance. All three machine learning models can output scarp line trial detection 

results during the training output. However, the 2-m buffer width machine learning model quit 

model training prematurely at Epoch no. 23. It is worth noting that machine learning model with 

1-m buffer width was also trained but could not make any predictions during training and thus is 

removed from further consideration in this study. Both training and detection require over 10-

hours computing time for a case with 9,000 training chips created from the 4 western Maryland 

counties’ 1m-resolution slope raster training data. Based on the observed results of detected 

scarp line polygons for the four western Maryland counties (GA, AL, WA, FR) using the trained 

machine learning model, 3-m buffer width was determined to be the best and adopted for this 

study of scarp line detection using machine learning model. The computing time for machine 

learning scarp line detection for the 4 western counties was 12 hours 53 minutes. The machine 

learning model detected 115,176 scarp line polygon candidates for 4 western counties.  

 

It is worth noting that the difference between the Arc gis slope tool and surface parameter slope 

tool was investigated by comparing their respective values at scarp line. For the slope scarp line 

polygon detection using machine learning model, training chips were first generated using the 

Scarp line 2m width polygon 3m width polygon 4m width polygon
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slope raster tiff images as training data and the machine learning model’s hyper-parameters were 

tuned to optimize its performance for scarp line detection in Maryland. However, it was 

recognized that the slope function in arc gis pro substantially underestimates those large slope 

values typically associated with scarp lines (i.e., cliff-like abrupt drop in elevation at scarp line). 

The current slope raster used for training data generation is calculated from 1m-resolution 

LiDAR DEM by taking spatial derivative over a 3x3 cell area in arc gis pro, and this averaging 

operation would introduce large error to slope raster tiff at locations with abrupt change in 

elevation such as scarp line and result in low detection accuracy when used for instance 

segmentation machine learning model training for scarp polygon detection. As shown in Figure 

27 below, the zonal statistics table for max slope for all scarp polygons in the four western 

Maryland counties (GA, AL, WA, FR counties) suggests the surface parameter slope tool 

generates larger slope values which is more consistent with actual slope values of scarp lines. 

This can also be explained using a sample slope shown in Figure 26. The slope tool in arc gis pro 

indicates the Slope value is 32 degree (= arctan(5/8)), while the actual Maximum slope is 78.69 

degree. This is because the slope tool in arc gis pro uses the average value of a 3x3 cell surface 

scanning window to calculate the slope value. For locations with abrupt change in elevation 

typical of scarp lines, its large slope at the scarp would be substantially underestimated due to 

this averaging action. Surface parameter slope raster and focal range statistics raster are thus 

adopted as the input feature for the re-trained machine learning model for detecting scarps.  

 

         

Figure 26. Illustration of the Slope tool in arc gis pro 

The Surface parameter slope tool allows for flexible moving window size and adaptive window 

options that evaluates the local variability of the terrain and identifies the largest appropriate 

neighborhood size for each cell. Arc gis recommends using surface parameter slope tool if 

the input raster parameter value is high resolution with a cell size of less than a few meters. So in 
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this study the input value calculated using the surface parameter slope tool in arc gis pro is 

recommended as input feature data for machine learning model instead of slope raster images. 

 

      
Figure 27. Zonal statistics (maximum slope) histogram of scarp polygon’s slope values: (a) 
Results from acr gis Slope tool; (b) Results from arc gis Surface Parameter slope tool 

 

 

Figure 28. Flowchart of instance segmentation machine learning model based scarp line 
detection using unscaled 8-bits unsigned 1-m surface parameter slope raster tiff data 

Next, new machine learning model has been trained using expanded data that merges the 1m-

resolution LiDAR DEM files for the 11 counties in the middle region of Maryland. Surface 

parameter slope raster tiff images of this middle region were first generated from 1-m resolution 

LiDAR DEM data. The training chips generated from these surface parameter slope raster 

images used 3m-wide buffer scarp line polygons. The computing time for scarp line detection for 

the 11 middle counties took 25 hours 9 minutes. The instance segmentation machine learning 

model detected 90,028 scarp line polygon candidates in the 11 middle counties in Maryland. 

 

Another bigger instance segmentation machine learning model for scarp line identification was 

trained in arc gis pro based on a consolidated dataset with a total of 9,336 training chips created 
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from the 4 western Maryland counties (GA, AL, WA, FR counites) and 1,0956 training chips 

created from the above-mentioned 11 middle region counties with 45-degree rotation 

augmentation. This machine learning model is called concatenated ML model. The total training 

time took approximately 10 hours 40 minutes for the instance segmentation model using the 

combined middle region and western region data. The trained machine learning model was then 

used to detect scarp line polygons in the west and mid region of Maryland by setting the 

confidence threshold equal to 0.3. The training loss curve for this 3m-wide scarp line polygon 

machine learning model is shown in Figure 29 below. 

 

 

Figure 29. Training loss curve for 3m-wide scarp line polygon detection machine learning model 

For those machine learning model detected scarp line polygons from the western and mid region 

surface parameter slope raster dataset, they were further processed by applying the boundary 

dissolve tools, creating centerline features for the polygons and filtering with 600-ft wide route 

buffer zone from roadway centerlines as shown in Figure 30. Quality check was also performed 

on scarp line candidates generated from ML model by visually checking the identified scarp lines 

and compared the quantities overlapped with inventory data and plotting histograms of total 

length of those identified scarp lines in the 4 western (GA, AL, WA, FR) and 4 middle (PG, BA, 

CH, AA) counties in Maryland based on two different confidence score threshold values.  
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Figure 30. Sample detected scarp line by the instance segmentation machine learning model 
(yellow polygon = detected scarp polygon, scarp line is the center line of the yellow polygon) 

A parametric study was performed to see if the model performance can be further improved by 

increasing the batch size to 16 (currently 8) and test the training strategy of extending the total 

training epochs to 100. Additionally, a separate machine learning model was trained with only 

middle region data, but no significant improvement was observed. Figure 31 shows the training 

loss curve of the scarp line detection machine learning model for the middle region counties. A 

parametric study of pixel depth was performed by comparing the detection performance of 32-

bits float, 8-bits unsigned and 16-bits unsigned input feature raster tiff images as training chips. 

16-bits unsigned surface parameter slope raster were generated for the re-trained machine 

learning model for scarp detection.  

 
Figure 31. Training loss curve of scarp line detection machine learning model for the middle 
region counties 

Post-processing of the detected candidate scarp polygons is required as several small polygons 

might partially overlap to form the true scarp polygon. Therefore, the following post-processing 

steps are recommended: 1. Filtering the detected candidate scarp polygons with a pre-specified 
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confidence score threshold (e.g., 0.6) and filtering by 600-ft buffer zone on both sides of 

highway center lines. In general, using higher confidence score threshold results in less number 

of identified scarp polygons. 2. Applying the dissolve tool to merge the partially overlapped 

smaller polygons at the true scarp polygon, or separating them by applying multipart to single 

part tool. 3. Applying the polygon to center tool to generate the scarp line. 

 

     
Figure 32. Machine learning detected scarp line samples in 4 western counties of Maryland 

 
To show the machine learning scarp line detection results, the concatenated machine learning 

model was implemented to identify the scarp lines in the 4 western counties (GA, WA, AL, FR).  

The total computing time for running this machine learning model took 15 hours 5 minutes for 

these four counties. A total of 24,770 scarp centerlines were generated from detected polygons 

with confidence score threshold set to be 0.6. However, after applying the filtering step with 600-

ft buffer zone on both sides of highway center lines mentioned above, only 2,831 scarp 

centerlines were kept inside the 600-ft route buffer zone: 537 scarp lines were in the GA county, 

436 scarp lines were in the WA county, 1242 scarp lines were from AL county, while the 

remaining 616 scarp lines were from FR county. Table 5 lists the quantity of machine learning 

detected scarp lines in 4 middle region counties (AA, BA, PG, CH) with confidence score 

threshold set to be 0.4. It can be seen that machine learning models can detect additional scarp 

lines not available in the initial SHA inventory dataset. It should be noted that this initial SHA 

inventory dataset was generated only for machine learning training purpose as seed dataset and 

was not intended to be exhaustive and complete. Therefore, it is normal that additional new scarp 
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lines are generated by running the machine learning model. Figure 32 shows sample scarp lines 

detected in these 4 western counties of Maryland.  

 
Table 5. Quantity of machine learning detected scarp lines in 4 middle region counties (AA, BA, 
PG, CH) (Confidence score threshold = 0.4) 
 

County # of ML detected scarp lines inside 
600-ft route buffer zone from highway 
center line 

# of ML detected scarp lines intersecting 
with MDOT SHA inventory scarp lines 

 
AA 

 
2,029 

34 

 
PG 

 
1,545 

20 

 
CH 

 
5,18 

2 

 
BA 

 
1,960 

40 

 

 
Figure 33. Maps of training chips from 11 middle region counties generated from 16-bits 
unsigned surface parameter slope raster tiff images 

 
 

Machine learning model for scarp line detection was subsequently run on the 16-bits 3-band 

surface slope parameter raster tiff data for another nine counties (MO, HO, HA, CL, CA, CO, 
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CH, FR and SM counties), followed by applying the above-described post-processing steps on 

the detected scarp polygons. Detections are done for 3-band 16 bits unsigned surface parameter 

slope rasters of MO, HO, HA, CL, CA, CO, CH, FR and SM counties. The machine learning 

detected scarp line results were compared with initial scarp line inventory data, as shown in 

Figure 35. The average running time for each county took approximately 3.5 hours when 

confidence score threshold is set to be 0.3. Sample scarp line detection results (in raster image 

format) of SM counties are also shown in Figure 34. Table 6 below summarizes the total number 

of scarp lines detected by machine learning model for these 9 counties. The detection is based on 

a confidence threshold of 0.3 and 1200-ft buffer zone from the route centerline. Samples of 

detected scarp lines after post-processing are shown in Figure 35 with the slope rasters as 

background in arc gis pro.  

 
Table 6. Quantity of machine learning detected scarp lines for nine counties (MO, HO, HA, CL, 
CA, CO, CH, FR, SM counties) (Confidence Score threshold = 0.3) 

 
County 

# of detected scarp lines within 1200-
ft buffer zone of highway centerline 

MO 2574 

HA 1185 

HO 2047 

CL 1085 

KE 486 

CA 486 

CE 1878 

CH 1178 

SM 1256 
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Figure 34. Samples of machine learning detected scarp lines in SM county 

 

 
 

 
Figure 35. Samples of machine learning detected scarp lines (red lines = inventory scarp line 
data; blue or green line = machine learning detected scarp lines) 
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CHAPTER 5. DEVELOPING NEURAL NETWORK MACHINE LEARNING MODEL 
FOR CONCRETE STRENGTH TEST DATASETS 
 
The research team trained fast.ai neural network model for concrete compressive strength tabular 

datasets and used the trained models to predict concrete strength with given feature variable 

values. Tuning the neural network model for optimal hyper-parameter values was conducted. 

Comparison of the predicted results from Fast.ai neural network model and real test data was 

also made by calculating the corresponding confusion matrices and drawing scatter plot in this 

study. The research team also did literature review to ensure the tabular data neural network 

model is current and has been updated for the concrete compressive data based on parametric 

study of hyper-parameter values. 

 

Concrete compressive strength predictions were made by machine learning models developed 

using thousands of historic strength tests with two different mix designs and several concrete 

placement variables. Machine learning models were trained for both Mix#3 dataset and Mix#6 

dataset. Data cleansing was conducted to ensure that only the most reliable data was used in 

training the tabular machine learning regression model. The first step of data preprocessing is to 

break down concrete mix design code into multiple feature sections including region code (RC), 

mix strength code (MSC), admixture code (AC), component code (COMC), regional plant 

number (RPC) and consecutive mix code (CMC). Records with missing feature values or with 

non-standard format were discarded from the dataset. Feature variables used to predict the 

concrete strength include the water-cement ratio (WCR), entrained-air (ENTAIR), ambient 

temperature (ATEMP), concrete temperature (CTEMP) and all features generated from the mix 

design code. The target features are the 28-day compression strength of standard 6”-diameter 

concrete cylinder specimens. Preliminary machine learning models were first built to predict the 

compressive strength of concrete cylinder #1 and average strength value of cylinders #1 and #2. 

 

The training and validation dataset only includes data records with feature variables in the 

reasonable range. The reasonable ranges of concrete mix and casting feature values for the two 

concrete mix designs (Mix#3 and Mix#6) considered in this study are listed in Table 1. 

Restrictions on the lower and upper bound values of considered feature variables were 
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determined based on MDOT SHA staff’s advice and the actual statistical distribution of training 

dataset. For Mix#3 concrete data, a total of 17,612 records were available for machine learning 

model training after data preprocessing and cleansing steps. For example, as shown in Figures 36 

and 38, most of the test data are within the range of 3,950 to 5,390 psi before pre-processing. 

However, the maximum strength is 53,120 psi which is unrealistically high and the minimum 

strength is 0 psi (too low value). After data cleansing and filtering, the real strength distribution 

for real Mix#3 concrete data ranges from 1260 to 5,990 psi (it is noted that no data samples 

between 5991 psi to 7500 psi). Similarly, most of strength value for Mix#6 dataset lies in the 

buckets from 4670 to 5,750. After data preprocessing and cleansing, the strength value range for 

Mix#6 dataset is from 3,050 to 10,000 psi. 

 

Table 7. Feature value range of concrete strength data for machine learning model training  

Features  Value Range of Feature Variables 

WCR 0.3-0.6  

SLUMP (in) 0-9  

ENTAIR 0 - 0.15 

ATEMP (°F) 18 -105 

CTEMP (°F) 50 -97 

Strength of CYL1, CYL2 (psi), Mix#3 1,000 – 7,500 

Strength of CYL1, CYL2 (psi), Mix#6 3,000 – 10,000 

 

The architecture of the adopted feedforward neural network model is shown in Figure 42.  A 

typical hidden layer with ReLU (rectified linear unit) activation function, batch normalization, 

and dropout is the state of art for feedforward neural network model. Batch normalization 

proposed by Ioffe and Szegedy (2015) normalizes the output of a previous activation layer by 

subtracting the batch mean and dividing by the batch standard deviation. This ensures that the 

gradients are more predictive and thus allows for use of larger range of learning rates and faster 

network convergence (Santurkar et al. 2018). Therefore, Fast.ai-adopted neural network model is 

already the state of art model for tabular data.  
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Two preliminary tabular models were developed for mix 6 dataset. The target variable is the 

compressive strength of cylinder 1 concrete for model 1 and the average strength value of 

cylinder 1 and cylinder 2 for Model 2. Features used as input variables are 'RC', 'AC', 'COMC’, 

'MSC',' RPC', 'CMC', 'SLUMP', 'WCR', 'ENTAIR', 'ATEMP', 'CTEMP', and 

'DPLACED_MONTH'. Two hidden layers with 200 nodes in each layer were used to connect the 

input layer and output layer.  The training dataset has 8,692 samples, with 10% allocated for the 

validation set. Batch size of 128 was used for both models. The optimal training epoch number 

of 180 was used for both machine learning models to avoid overfitting.  A prediction test was 

done on the Mix#6 dataset. A scatter plot is used to show the relationship between machine 

learning predicted data and real data as shown in Figure 45. The model has an RMSE (root-

mean-square error) of 511.92 and R2score of 0.72 between predicted data and real data for Model 

1. The machine learning models which predict the compressive strength of Mix#3 concrete data 

used the same input feature variables and neural network hyper-parameters, with epoch number 

set as 120. The prediction test shows an RMSE of 602.8 and R2 score of 0.55 between the 

predicted data and real data for this preliminary machine learning model using Mix#3 data.  

These machine learning models need to be improved so both machine learning models can have 

a R2 score over 0.8. Strategies for improving the machine learning model were evaluated from 

literature review study and selected strategy appropriate for concrete data use is discussed next.  

 

The concrete dataset was observed to have data imbalance issues in compressive strength values, 

therefore the data resample strategy was applied to overcome this imbalance problem by 

improving the distribution and thus the model performance. Regression resampling is a 

technique used in machine learning to address the issue of imbalanced data where the 

distribution of the target variable is not uniform across different values or ranges. In regression 

oversampling, the minority class is oversampled to balance the distribution of the target variable 

(Luís Torgo et al. 2013).  In this study, the samples are duplicated and replicated in a controlled 

manner to change the distribution of target values. For example, in Mix#6 dataset, data in the 

lowest bucket and highest bucket has been duplicated by five times while no replication was 

done in those middle range buckets. Other buckets have also been duplicated to change the value 

distribution as shown in Figure 50. A similar oversample strategy was also applied to the Mix#3 

dataset as well.  All data samples are divided in to 20 buckets. The lowest value bucket was 
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duplicated by 8 times and the middle peak value bucket was duplicated by 2 times. The value 

distribution after data resampling was shown in Figure 52.  

 

Machine learning models were trained for the resampled dataset for Mix#3 and Mix#6. The 

resampled Mix#3 dataset includes a total of 49,872 samples, while Mix#6 has a total of 11,682 

samples. The machine learning model was trained with 600 epochs to make sure training 

converged without overfitting or under fitting. Individual prediction test was made on the 

original dataset to predict the average strength of cylinder 1 and cylinder 2 specimens. Improved 

prediction performance was observed in both Mix#3 model and Mix#6 model as shown in Figure 

55 - 56. The updated Mix#6 model has a RMSE of 332.64 and a R2 value of 0.87, while the 

updated Mix#3 model has a RMSE of 230.4 and a R2 value of 0.89. It is concluded both machine 

learning models for predicting the concrete strength significantly improved. Considering the 

impressively high R2 value near 0.9 for both mix designs, these machine learning models are 

adopted for final use.  

 

Next, to analyze the relative importance of each input features to the machine learning model 

prediction, SHAP (Shapley additive explanations) analysis was performed. It is a technique for 

explaining the output of a machine learning model by quantifying the contribution of each 

feature to the predicted outcome. The SHAP values decomposed the predictions into the of each 

input feature, which allows for understanding and interpreting the importance of each feature in 

the prediction, and to identify the most influential features that may affect significantly the 

machine learning predictions. The SHAP values are calculated by comparing the model's 

predictions with and without a particular feature. The difference in prediction is attributed to the 

feature's impact on the model's output. This process is repeated for each concrete-test related 

feature, and the resulting SHAP values can be visualized using in the summary plot. 

 

Figures 57 to 58 show feature importance ranking using the SHAP value calculated for the data 

samples from the original Mix#3 and Mix#6 datasets, as well as for the original machine learning 

model and data-resampled model. Each horizontal axis represents an input feature variable. The 

variation on each horizontal scatter plot represents the variation to average value of concrete 

strength predictions to which the individual input feature contributes. The color of the scatter 
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points indicates the value of the feature for that particular instance, with red color indicating high 

values and blue indicating low values. The position of the scatter points indicates the direction of 

the feature's effect on the prediction, with features that increase the prediction shown to the right 

of the plot and features that decrease the predicted value shown to the left. For example, Figure 

57 indicates higher ambient temperature reduced the 28-days compressive strength for the Mix#3 

concrete, which is consistent with the findings by other researchers by Kaleta-Jurowska (2020).  

 

The SHAP plot indicates the three most influential feature variables to the machine learning 

predicted concrete strength are ranked as follows: R_C,  ATEMP, RP_C. COM_CRP_C, 

ENTAIR and ATEMP are the three most important influencing features for Mix#6 models. 

However, the plot also shows the importance ranking of feature ‘R_P’ for data-resampled model 

increased from 11 to 1 compared to the original model.   

 

For the classification machine learning model to predict the confidence score of passing the 28-

day concrete strength test, graphs of true value of concrete strength from laboratory test vs. 

confidence score of machine learning classification. The purpose of this classification machine 

learning model is that by looking at confidence score (e.g., below a certain threshold value), it is 

decided whether there are merits to do the actual strength test if the confidence score from 

machine learning model prediction is fairly low.  A binary classification machine learning model 

was thus trained to output the confidence score of concrete specimens passing the 28-days 

strength test. For Mix#3 dataset, samples larger than 3000 psi were assigned the label “Pass” 

while samples smaller than 3000 psi were assigned “Fail”. Data resampling strategy was also 

applied to Mix#3 dataset to overcome the data imbalance issue. The machine learning model 

used batch size of 2,048 and was trained for 200 epochs. The f1-score for both categories 

reached over 0.8 as shown in the accuracy report. For Mix#6 dataset, data was cut and assigned 

the pass/fail label by the strength threshold of 4500 psi. The f1-scores for both categories were 

close to 1.  

 

The plot of true concrete strength vs. predicted passing confidence score was shown in Figures 

63 to 64. It can be clearly seen in these scatter plot graph of true concrete strength value vs. 

machine learning prediction confidence score that most of the data are located either in Quadrant 
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#1 or Quadrant #3 of the graph while very small percentage of data points fall within Quadrant 

#2 for both Mix3 and Mix6 data. This distribution pattern suggests that if 0.5 confidence score is 

used as the dividing line between passing or not passing the strength test, those predictions with 

confidence score < 0.5 have a very high chance not to pass the strength. The ideal case is that all 

points are either in Quadrant #1 (pass) or Quadrant #3(fail the test). Very small percentage of 

points are in Quadrant #2 indicates the machine learning classification is doing its job in reliable 

prediction of concrete strength in most cases. No data points in Quadrant #4 suggests that 

predictions with confidence score > 0.5 always pass the strength test. Those points with strength 

> 7000 psi have a confidence score near 1.0 (i.e., almost certain to pass the test). Most of the data 

in Quadrant #3 has a low confidence score value (i.e., low confidence score suggests it is highly 

likely not to pass the test). The prediction achieved high accuracy with 99.51 for Mix#6 and 

99.45% for Mix#3. For each mix strength, samples with a real concrete strength greater than the 

strength threshold (orange line in the figure) but with a label of failure (Quadrant #2) is less than 

2% of total data samples in Quadrants 2 and 3 combined, which is useful for engineers to decide 

whether to throw out those specimens without tests when performing the compressive strength 

test. 
 
 
 
 

 
Figure 36 Histogram of Mix 3 Cyl1 original data 
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Figure 37. Histogram of Mix 3 Cyl1 clean data 

  

Figure 38 Histogram of Mix 3 Cyl2 Original data 
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Figure 39 Histogram of Mix 3 Cyl2 clean data 

 
Figure 40 Histogram of Mix 6 Cyl1 original data 
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Figure 41 Histogram of Mix 6 Cyl1 Clean data 

 

 
Figure 42 Architecture of feedforward neural network model for concrete strength data 

 
Figure 43 Training loss curve, mix 6, model 1 



 

52 
 

 
Figure 44 Training loss curve, mix 6, model 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 45 x-y scatter plot mix 3, model 1 

Figure 46 x-y scatter plot mix 3, model 2 
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Figure 47 x-y scatter plot mix 6, model 1 

 

 
Figure 48 x-y scatter plot mix 6, model 2 
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Figure 49 Original distribution of Mix 6 Clean strength Mean CYL1 CYL2 

 
 

 
Figure 50 Resampled distribution of Mix 6 strength Mean CYL1 CYL2 
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Figure 51  Original distribution of Mix 3 Clean strength Mean CYL1 CYL2 

 
 

 
Figure 52 Resampled Mix 3 strength Mean CYL1 CYL2 
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Figure 53 Mix 3 model training loss curve 

 
 

 
Figure 54  Mix 6 model training loss curve 
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Figure 56 x-y scatter plot for mix 3 mean cyl1 cyl2 

 
 
 

Figure 55 x-y scatter plot for mix 6 mean cyl1 cyl2 
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Figure 57 SHAP plot for resampled dataset, mix 3 

Figure 58. SHAP plot for original dataset, mix 6 
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Figure 59 Training Loss Curve for mix 3 binary classification model 

 
 
 
 
 

 
Figure 60 Accuracy Report for mix 3 binary classification model 
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Figure 61 Training Loss Curve for mix 6 binary classification model 

 
 

 
Figure 62 Accuracy report for mix 6 binary classification model 
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Figure 63 Mix 3concrete real test strength vs. ML prediction confidence score scatter plot 

 

 
 

Figure 64 Mix 6 concrete real test strength vs. ML prediction confidence score scatter plot 
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CHAPTER 6. DEVELOPING NEURAL NETWORK MACHINE LEARNING MODEL 
FOR PAVEMENT MARKING RETROREFLECTIVITY DATA 
 
 

The objective of this task is to train neural network models for selected highway tabular dataset 

of interest to MDOT SHA, specifically pavement marking retroreflectivity data in this chapter, 

and then use the validated neural network models for predicting the pavement marking 

retroreflectivity value at given location and age. Plotting the variation of predicted pavement 

marking retroreflectivity values with their ages would reveal the deterioration relationship of 

pavement markings. Data preparation including extracting relevant data entries from existing 

datasets, removing null data, filling missing values, discarding redundant data samples, 

normalization and converting data into acceptable format by the Fast.ai neural network models 

were conducted first to make the dataset suitable for machine learning model training.  

 

Pavement markings are vital components of transportation infrastructure, providing valuable, 

life-saving information to road users. The various forms of markings on road surfaces are critical 

safety assets with essential safety functions. The information conveyed to the road users by 

pavement markings are crucial to most short-range and long range driving decisions (Carlson et 

al. 2013). Transportation agencies in the United States spend millions of dollars every year to 

apply pavement markings and maintain them in good condition of service. Retroreflectivity of 

pavement markings is most commonly measured using the Coefficient of Retroreflected 

Luminance (RL). It is the ratio of luminance (the total amount of light reflected back to the 

driver) and normal illuminance (the illuminance of the headlights on the marking) and is 

measured in millicandelas per lux square metre (mcd/m2/lux). There are two standard practices 

for measuring retroreflectivity: vehicle-mounted retroreflectivity measurement equipment (e.g., 

Laserlux) that is mostly used for measurement in highways or major multi-lane roadways; and 

handheld retroreflectometer (e.g., LTL-X) (Sassani et al. 2021). Measured retroreflectivity data 

considered in this study were taken using Laserlux mobile retroreflectometer, which uses a 

scanning laser source at an angle, and measures the laser beam reflected back, as defined by 

ASTM Standard E3320-21. Transportation agencies account for driver preference of 

retroreflectivity by specifying minimum values ranging between 100 and 150 mcd/m2/lux as the 
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minimum. Since retroreflectivity changes (deteriorates) with age, this threshold should be 

considered when evaluating pavement marking performance for restriping purposes (Hawkins 

and Smadi 2010). 
 

In developing the pavement marking retroreflectivity machine learning (ML) model, the research 

team first merged several distinct data sources and created large pavement marking 

retroreflectivity dataframe for machine learning model training. The original data sources include 

the following datasets from separate files: application date data from 

Condition_Data_Worksheet_09-09-2022.xlsx, application date data from 202x FQA 

Dashboard.xlsx, application date data from JG xx-xx-2x ElectronicMaster.xlsx, Laserlux 

measured retroreflectivity data and inspection date data from 202x DUMP files. Python script 

has been written to import the condition data worksheet, the record table in each excel worksheet 

has been extracted and merged into a large data frame. A python script was also created to 

calculate the duration days (i.e. age of pavement marking) between inspection date and most 

recent installation date obtained from the FQA dashboard dataset. Final step includes reading and 

merging the ‘Electronic master’ data, updating the nearest neighbor installation date search 

methodology, merging the laserlux test data with ‘condition work sheet’, ‘Dashboard’ and 

‘Electronic Master’ files with county name, route name and mile points. The duration days were 

then compared with the original ones calculated from condition worksheet, the smallest positive 

value duration days were then used as the updated duration (in days) feature of the pavement 

marking at the time of Laserlux based retroreflectivity measurement. The corresponding material 

was selected as real pavement marking material such as 40-mil paint. Table 8 shows the 

pavement marking materials considered in this study. Feature extracted from condition data 

worksheet include the application date material and mile points. The duration for each record 

was calculated by the inspection date from Laserlux data files and nearest mile marker (i.e. mile 

points) with application date. Records with missing features were removed. The features from 

the condition data worksheet were attached to the 1/100th mile Maryland route mile markers 

based on beginning mile point (BMP) and ending mile point (EMP). In this dataframe with 1288 

records, the material, application date (installation date) are included as training features. 
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Figure 65. Geospatial visualization of pavement marking retroflectivity dataset in arc gis pro 
 

For the machine learning model training, the following features are considered as inputs to the 

model: striping material, age (duration from application date to inspection date, in days), 

functional class and AADT data to create the new training dataset. Shapefile for the dataframe 

was generated to visualize the geospatial distribution of pavement marking data in Arcgis pro. 

The map shown in Figure 65 visualizes the geospatial distribution of Laserlux-measured 

pavement marking retroreflectivity data by MDOT SHA from Year 2020 to 2022.  A preliminary 

machine learning model for pavement marker retroreflectivity prediction was first trained.  

 

 

Figure 66. Visualization of 1/100th mile markers with application date (spatial distribution of 
1/100 mile markers with application date and material features from condition data work sheet) 
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In creating the data frame for the pavement marking retroreflectivity data, the application date, 

material, functional class and AADT were attached to the Laserlux Data record by spatial join 

with nearest distance search. The searching boundary is restricted within a circle with radius 

equal to 500 ft.  

 

 

Figure 67. Maryland route network function class map 

 

 

 

Figure 68. Maryland route network AADT (annual average daily traffic) map 
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Table 8. Reasonable range of pavement marking age (duration) and retro-reflectivity values 

 
 

Table 8 above lists the reasonable range of duration and retro-reflectivity value given by MDOT 

SHA engineers. The training dataset was then filtered by applying the reasonable range of 

duration and retro-reflectivity value. To increase the training dataset size, the feature range 

(upper bound increased by 150 to mitigate potential artifact effect such as sensor noise) listed in 

Table 7 was later enlarged for second round machine learning model training.  The total number 

of data samples in the updated training dataset was increased to 17,143 without oversampling. 

 

 

Figure 69. Dataframe for pavement marking retroreflectivity machine learning model training 
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The final dataset for machine learning model training after oversampling includes a total of 

85,806 records. Features for training includes 'Material’, 'Road Condition’, ’Functional class’, 

'Stripe Color’, 'Application month’, 'Duration’, and 'AADT’. AADT represents annual average 

daily traffic. The target variable is ‘two stripe average retroreflectivity”, which is the 

retroreflectivity value measured by Laserlux mobile unit. The feature values were used to filter 

the training dataset. A total of 9164 out of 85806 training records are kept for training use after 

filtering. There are 47,469 data samples (out of 115,038 total data samples) with two stripe 

average retroreflectivity value below 100 mcd/m2/lux, but only data samples with 

retroreflectivity below 20 were removed from the training set. 

 

 

Figure 70. Geospatial distribution of pavement marking retroreflectivity data 

 

Table 9. Duration of pavement marking at retroreflectivity inspection time derived from the three 
installation-date data sources 

 



 

68 
 

   

Figure 71. MD-140 pavement marking retroreflectivity field test data matched to 1/100 mile 
makers 

The new (early April) field measurement data is merged to dataframe and visualized in arcgis 

pro, the data is spatial joined with 1/100 mile markers (i.e. mile points).  The MD-140 

Retroreflectivity vs. mile points is shown in Figure 71 to visualize the data dispersion.  

 

 

Figure 72. Training loss curve of white 40-mil pavement marking retroreflectivity machine 
learning model 

 

After new pavement marking retroreflectivity data from the 2020-2022 FQA dashboard dataset 

became available to the research team and processed in python environment, the retroreflectivity 

machine learning model was re-trained by appending the new data to the original training 

dataframe. Over-sampling the combined marking reflectivity dataset was also done for the 

yellow and white striping colors with the goal to overcome the data imbalance issue in the 

original dataset. Figure 72 shows the training loss curve of white 40-mil pavement marking 

retroreflectivity machine learning model, while Figure 73 shows a scatter plot for the updated 

MD-140 Retroreflectivity vs. Mile Point

Mile Point (Carrol County)
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machine learning model predictions vs. true white-40mil pavement marking retroreflectivity 

data.  The machine learning model training converged after 500 epochs with R2 value equal to 

0.71.   

 

 

Figure 73. Updated pavement marking retroreflectivity machine learning model predictions vs. 
true value (from field test) for pavement marking of White striping color 

 

      

Figure 74. Training loss curve of machine learning model using Yellow 40-mil pavement 
marking retroreflectivity data 



 

70 
 

 

Figure 75. Updated pavement marking retroreflectivity machine learning model predictions vs. 
true value (from field test) for pavement marking of Yellow striping color 

 
The tabular machine learning model for Yellow striping color pavement marking retroreflectivity 

is updated by addressing the data imbalance issue through oversampling. Figure 74 shows the 

training loss curve of Yellow 40-mil pavement marking retroreflectivity machine learning model, 

while Figure 75 shows a scatter plot for the updated machine learning model predictions vs. true 

Yellow 40-mil pavement marking retroreflectivity data.  The machine learning model training 

converged after 500 epochs with R2 value equal to 0.61.   

 

 

Figure 76. Feature importance ranking for white 40-mil pavement marking retroreflectivity 
machine learning model 
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The tabular machine learning model for pavement marking retroreflectivity is evaluated through 

a feature importance study with SHAP analysis was also performed. The SHAP plot for white 

color pavement marking retroreflectivity model suggests the duration and material type are the 

two most influential factors. 
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CHAPTER 7. DEVELOPING NEURAL NETWORK MACHINE LEARNING MODEL 
FOR GEOTECHNICAL DRILLING DATA 
 
The objective of this task was to update and modify the neural network models developed for 

various geotechnical drilling datasets including grain size, groundwater table depth, SPT N-

Value ranges.  Phase 2 research further developed the model from Phase 1 by including more 

data and feature variables. Data resampling techniques were also applied to the dataset to 

improve the performance of models. The resulting model is fully implemented and is utilized as 

part of the soil boring request process in MDOT SHA to deliver preliminary subsurface data 

based on machine learning analysis with over 10,000 borings in a centralized database, and then 

use the validated neural network models for dependable variable prediction. Data preparation 

including extracting relevant data entries from existing datasets, removing null data, filling 

missing values, discarding redundant data samples, normalization and converting data into 

acceptable format by the Fast.ai neural network models have been conducted.  

 

In this study, the research team reviewed drilling (SPT) data based machine learning model 

training and predictions, and investigated optimization approach to the drilling data models; The 

research team also did literature review to ensure the tabular data neural network model is 

current and has been updated for the newly available drilling data.  

 

Two datasets were used for machine learning model training to predict the grain size category at 

specific drilling depth. The first machine learning model was trained by a total of 293,728 data 

samples from MDOT SHA drilling sites. Feature variables including elevation, drilling depth. 

Latitude and longitude have been extracted from the MDOT SHA database. A nearest neighbor 

search was employed to extract the major rock type from the USGS lithology map. Samples with 

missing features have been removed and a total of 285,944 data samples are available for 

machine learning model training. The second model was trained by selected data from Maryland 

and consolidated with additional drilling database from Ohio and Missouri. The pre-processed 

data includes a total of 248,686 data samples for training. The distribution histogram for both 

datasets are shown in Figures 77 and 80, showing that sand and silt are the two major types of 

soils in the Maryland drilling data and each of these two soil type data has over 100,000 data 
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samples. Gravel has the fewest data samples in the training dataset, with less than 2,000 records. 

For the consolidated dataset, the majority category is Clay, which has over 120,000 data samples. 

The minority soil type is also Gravel, which has fewer than 10,000 samples. The spatial 

distribution of grain size categories is visualized in Figures 78 to 79.  The grain size in mid and 

east regions of Maryland at shallow drilling depth are mostly sand while for west region it is silt. 

Data is concentrated mostly at relatively shallower depth in the west region of Maryland than the 

larger depth in east region.  

 

There are also two datasets used to predict the ground water depth through machine learning 

model. The first machine learning model was trained with a total of 7,760 testing data from 

Maryland drilling project. Data cleansing and preprocessing was applied to the dataset to remove 

samples with missing feature variable values and target variables. A total of 6,984 data samples 

were included for training. The other model was built with data extracted from USGS nationwide 

database. The USGS dataset includes 9,673 training samples after data preprocessing and 

cleansing. The distribution histogram was plotted in Figures 85 to 86. The histograms suggest 

that most data samples have ground water depth less than 10 ft, and the most populous water-

depth bucket is 2-4 ft for Maryland data which has over 1,000 samples, and USGS nationwide 

data, which has over 2,000 samples. 

 

Tabular machine learning models have also been developed to predict the Standard Penetration 

test (SPT-N) test values. The SPT-N value provides information regarding the soil strength. For 

example, SPT-N value may be a meaningful indicator of the friction angle of sandy soils and 

clay soils and the stiffness of the clay (Ruwan 2016). The SPT-N dataset includes a total of 

37,457 samples available for machine learning model training. Features variables for predicting 

the SPT-N number buckets include GPS coordinates, rock type, drilling month, drilling depth 

and elevation. Samples with missing feature variable values and target variables were discarded 

from the training dataset. The histogram in Figures 82 visualized the data distribution of SPT-N 

dataset. The refusal depth test is defined as the depth or point which the hammer does not 

advance for >50 blows/6 inches. The histogram of refusal depth bucket is shown in Figure 88. 

The bucket of 21-50 has a peak distribution among other buckets in terms of amount of data. The 
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spatial distribution has also been visualized. Mid and west regions have most data in the 50+ 

bucket.  

 

Parametric study has been done to select feature variables and the optimal machine learning 

model hyper-parameter values. Multiple-label classification machine learning models were built 

for the Maryland and consolidated grain size dataset. Since both models were trained with 

dataset containing over 200,000 data samples, both models used a batch size of 2,048. The 

hidden layers include two 200-nodes layers to connect the input layer and output layer in the 

neural network of model. Model 1 was trained for 40 epochs while Model 2 was trained for 30 

epochs to ensure they are converged without overfitting or under fitting issue in training. The 

accuracy report for the machine learning predicted dataset exhibits an average f1-score of 0.65 

for all categories. The preliminary result shows the minority category of gravel has a lower f1-

score than other categories. The scatter plot of real category vs. predicted category is visualized 

in Figure 91. The radius of the circle represents the size of dataset (numbers of samples) falling 

inside the corresponding soil category. 

 

Multi-label classification models were also trained for the SPTN dataset. The SPTN value was 

divided into 11 buckets and the model was trained to predict the corresponding bucket of the 

SPTN value. The input feature variables include the GPS coordinate and elevation of the drilling 

site, the drilling month, the USGS major rock type, and the drilling depth. The batch size for 

both models was taken as 128. The hidden layers include three 200-neurons layers. The training 

epoch for each model is 40. The accuracy reports for both models The average accuracy is 

similar for the two models, both are around 0.4.  

 

Two regression machine learning models have been developed for the dataset of MD 

groundwater depth and the USGS groundwater depth. These preliminary machine learning 

models apply a two-layer hidden neuron network, each layer has 200 neurons. The model was 

trained for 200 epochs based on the findings from a previously done parametric study and used a 

batch size of 512. The input feature variables include the GPS coordinates and elevation of the 

drilling site, the drilling month and USGS major rock type. The prediction test was done on the 
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Maryland dataset and real data vs. predicted data scatter plot was shown in Figures 95 and 97. 

The prediction for Maryland dataset reached an RMSE of 6.62 and a R2 score of 0.56. 

 

The drilling datasets were observed to have imbalanced distribution pattern in the target variable. 

Therefore, data resampling was applied to improve the model performance by making the 

distribution relatively more uniform. The dataset of grain size has imbalanced distribution 

pattern in the target variable since the gravel category has fewer than 2,000 samples while sand 

and silt categories have over100,000 samples. Therefore, the data resampling strategy was 

applied to the grain size dataset. Four machine learning models were trained. These models 

oversampled the gravel category by 3, 4, 10, 15, 20 times, and two distribution histograms of 

resampled data are plotted in Figures 102 to 103. It was found that the models duplicated the 

gravel category by 3-4 times have better average accuracy than other models in machine learning 

prediction. The oversampled model improved the average accuracy from 0.66 to 0.72, while all 

other models with larger over-sampled data size have lower average accuracy than the original 

model. The scatter plot of real category vs machine learning predicted category can also be used 

visualize the improvement in predicting the minority group.  

 

The data resampling strategy has also been applied to the SPT-N bucket and groundwater depth 

dataset. Histograms of SPT-N buckets is shown in Figure 105, and data in the 50+ bucket has 

been down-sampled and data in other buckets have been oversampled. The neural network 

machine learning model used the same hyper-parameter values as the original model. A 

prediction test has been done on the original dataset. The accuracy report and the scatter plot of 

machine learning predicted data vs. real data shows that the average accuracy has improved from 

0.4 to 0.51, and the f-1 score for the minority groups have been improved by adopting the data 

resampling strategy for the retrained model. The ground water depth dataset has also been 

resampled and the updated machine learning model improved the RMSE to 5.90 and the R2 score 

to 0.65. 

 

SHAP analysis was conducted to study the relative contribution significance of various feature 

variables considered in the training of the drilling dataset machine learning model. The SHAP 

value plot for the grain size classification model suggests the USGS major rock type is an 
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important influencing factor for both the Maryland dataset and consolidated dataset. GPS 

location is also an important influencing factor for the model. For SPT-N bucket classification 

model, the drilling depth is the most important contributing factor, while latitude and rock type 

are relatively less important factors for the machine leaning model. As visualized in the SHAP 

value scatter plot for the ground water depth, the drilling site GPS coordinates and elevation are 

predicted to be the two most influencing factors in machine learning model predictions. 
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Figure 77. MD grain size dataset distribution 

   
Figure 78. Spatial distribution of Grain Size data (x-y plane) 
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Figure 79. 3D spatial distribution of MD Grain Size Dataset 

 
 

 
Figure 80. Concatenated grain size dataset distribution 
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Figure 81. SPT number buckets distribution 

 

 
Figure 82. cleansed SPT number buckets distribution 
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Figure 83. Spatial distribution of SPTN bucket data (x-y plane) 

  

 
Figure 84. 3D spatial distribution of MD SPTN bucket Dataset 
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Figure 85. Histogram of MD ground water depth distribution 

 

 
Figure 86. Histogram of USGS nationwide ground water depth distribution 
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Figure 87. Spatial distribution of USGS nationwide ground water depth distribution 

 
 

 
Figure 88. Refusal depth bucket Distribution 
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Figure 89. Training loss curve for MD grain size model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 90 Accuracy report for MD grain size model 
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Figure 92. Training loss curve of consolidated grain size data model 

 

Figure 91. Grain size predicted category - real category scatter plot 
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Figure 93. Accuracy report of consolidated grain size data model 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 94. Training loss curve of MD groundwater depth dataset 
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Figure 96. Training loss curve of USGS nationwide groundwater depth model 

 

Figure 95. x-y scatter plot of MD groundwater depth model 
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Figure 97. x-y scatter plot of USGS nationwide ground water depth model 

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 98. Training loss curve of MD SPTN model 
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Figure 99. Accuracy report of MD SPTN model 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 100. Training loss curve of consolidated SPTN model 



 

89 
 

 
Figure 101. Accuracy report of consolidated SPTN model 

 
Figure 102. Histogram of the resampled MD grain size dataset1 
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Figure 103. Histogram of the  resampled MD grain size dataset1 

 

 
Figure 104. Accuracy report of resampled grain size dataset model 
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Figure 105. Histogram of the resampled SPTN dataset 

 

 
Figure 106. Accuracy report of resampled SPTN model 

 
 
 
 

 



 

92 
 

 
Figure 107. x-y scatter plot of resampled SPTN model 

 

 
Figure 108. SHAP summary plot for MD grain size model 

 
Figure 109. SHAP summary plot for consolidated grain size model 
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Figure 110. SHAP summary plot for SPTN model 

 
 

Figure 111. SHAP summary plot for ground water depth  model 
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CHAPTER 8: SUMMARY & CONCLUSIONS 
 
In this Phase II machine learning study, cutting-edge machine learning algorithms have been 

used to model the inherent complex relationship in selected highway datasets including LiDAR 

DEM data, concrete strength data from laboratory tests, drilling data from field tests, pavement 

marking retroreflectivity data collected by Laserlux mobile unit. Instance segmentation machine 

learning methods have been investigated and their prediction performance were tested for 

validity on automated generation of geotechnical inventory dataset including embankments and 

slopes as well as scarp distress lines. Team effort and coordination with MDOT SHA staff and 

engineers has been recognized as a very important factor to the success of this research, 

especially in identifying the research opportunities in highway datasets, retrieving and converting 

raw datasets from database servers to make them suitable for machine learning use, and 

providing professional guidance on machine learning model feature variables and desired output 

formats (e.g., concrete strength data and pavement marking retroreflectivity data). Three types of 

machine learning algorithms were studied, including neural network model for tabular data, 

LiDAR DEM derived slope raster images based random forest model for landslide risk 

assessment, instance segmentation models for embankment polygon and scarp distress lines 

detection applications. Specifically, the research team developed and tested machine learning 

models to make concrete compressive strength predictions by utilizing historical data from 

thousands of laboratory concrete strength tests done for various mix design and concrete 

placement variables. The research team also updated and tested machine learning model for 

several types of drilling data including SPT-N, grain size, and groundwater depth. A state-of-art 

instance segmentation machine learning model using ResNet algorithm were also tested for 

detecting objects of interest such as highway slopes and scarp distress lines in LiDAR DEM data 

derived raster tiff images for Maryland.  

 

Machine learning models can be utilized by providing design engineers with historic data-based 

predictions. These predictions will be implemented to generate more accurate preliminary designs, 

which will result in significant fiscal savings. These machine learning methods will also help ease 

delays in material testing by giving data requesters information that can be immediately utilized. 
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It is imperative that we get these machine learning models in place to expedite the process of 

providing better preliminary data to MDOT SHA customers, thus improving customer service, 

fiscal savings, and reduced delays across all areas of OMT. Data size and quality is an important 

issue to ensure machine learning model performance and will thus be studied for the newly 

identified data as well. These models can be used to assist with the decision-making process of 

MDOT SHA in project planning and construction.  

 

Based on the findings from this research, the suitability and applicability of each machine 

learning model type considered in this study of highway datasets are summarized below, 

• A geospatial machine learning model has been applied to the statewide 2-m resolution 

LiDAR DEM data with the goal of mapping the landslide risks for Maryland. Trained 

with 256x256 cell-sized slope raster tiff chips based on historical slope failure data, the 

machine learning model was used to predict for landslide risk at a given location in 

Maryland and landslide risk maps for all counties in Maryland were generated. The map 

is presented in raster tiff formats and locations with risk score greater than 0.5 have been 

highlighted to inform engineers with increased landslide risk. Since a 2-m resolution 

LiDAR DEM data is used for generating the landslide risk map, landslide risk score can 

be found for each cell with a 2m x 2m small area in Maryland. This is considered high 

resolution landslide risk mapping in current practice. Preliminary inspection of the 

landslide risk map and comparing those areas with high landslide risk suggests that the 

machine learning predicted landslide risk results are consistent with the information from 

other sources such as USGS landslide risk map in general.  

• Instance segmentation machine learning model was trained and successfully used to 

automatically identify and draw the embankment polygons in arc gis pro. Slope raster tiff 

images created from state-wide 2-m resolution LiDAR DEM data were considered 

appropriate for machine learning model enabled embankment and slope detection. 

Training data quality is critical to successful machine learning model predictions. Hyper-

parameter tuning of machine learning model such as training image size and training 

epoch numbers also have significant effect on the optimal performance of embankment 

polygon detection machine learning model. It is noted that the total number of detected 

embankment polygons can be increased by lowering the confidence score threshold 
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value. However, it is general belief that those embankment polygons with higher 

confidence score value are more accurate. Post-processing of the identified embankment 

polygons such as filtering and merging are necessary. Validation of the machine learning 

identified embankment polygons were made by comparing with embankment inventory 

data provided by MDOT SHA.  

• Instance segmentation machine learning model was also trained and applied to 

automatically detect scarp lines in arc gis pro. Surface parameter slope raster tiff images 

created from statewide 1-m resolution LiDAR DEM data were considered appropriate for 

machine learning model enabled scarp line detection. However, it is hypothesized that 

sub-meter resolution LiDAR DEM data will be even helpful in generating scarp lines 

using machine learning method (because scarp distress line typically has a very high 

slope value due to abrupt change in elevation at scarp surface) and future research should 

consider to use the higher resolution LiDAR DEM data such as 1-ft resolution. Training 

data quality is again found to be critical to successful machine learning model 

predictions. Hyper-parameter tuning of machine learning model such as training image 

size and other factors (e.g., 3-band 16-bits unsigned raster image format) also have 

significant effect on the optimal performance of scarp line detection machine learning 

model. Post-processing of the identified scarp line polygons such as filtering and 

centerline extraction are necessary. Validation of the machine learning identified scarp 

lines were made by comparing with scarp distress line inventory data provided by MDOT 

SHA.  

• Tabular neural network machine learning model for concrete compressive strength 

predictions by utilizing historical data from thousands of laboratory concrete strength 

tests done for various mix design and concrete placement variables. Fast.ai neural 

network model was adopted in this study because Fast.ai model has demonstrated the 

state-of-art performance in the tabular data modeling in this study. Tabular data here 

refers to text (or ascii data) data typically stored in a SQL database and spreadsheet file. 

Two types of feedforward neural network models are available in Fast.ai for tabular data 

modeling: regression model and classification model. Both classification and regression 

machine learning models were developed for the concrete test data. For classification 

model, the training target is to classify the data samples into corresponding discrete 
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classes. The output of a regression model is nonetheless a continuous variable. Data 

cleanup was conducted to ensure that only the most reliable data was used in training a 

tabular neural network regression model. The concrete strength regression machine 

learning model prediction yields a R2 value equal to 0.87 when tested on validation data. 

For the classification machine learning model to predict the confidence score of passing 

the 28-day concrete strength test, graphs of true value of concrete strength from 

laboratory test vs. confidence score of machine learning classification. The purpose of 

this classification machine learning model is that by looking at confidence score (e.g., 

below a certain threshold value), it is decided whether there are merits to do the actual 

strength test if the confidence score from machine learning model prediction is fairly low.  

This can be clearly seen in the plotted graph of true concrete strength value vs. machine 

learning prediction confidence score as most of the data are in either Quadrant #1 or 

Quadrant #3 of the graph while very small percentage of data points fall within Quadrant 

#2 for both Mix3 and Mix6 data. This distribution pattern suggests that if 0.5 confidence 

score is used as the dividing line between passing or not passing the strength test, those 

predictions with confidence score < 0.5 have a very high chance not to pass the strength.   

• Laserlux collected pavement marking retroreflectivity data was also used to train 

machine learning regression models and predict the retroreflectivity values for various 

marking materials. Feature variables include county name, route number, age, materials 

and AADT for the regression machine learning model. Correct value of pavement 

marking installation date is critical to the accuracy of their age (or duration) value. 

Shapefile for the data frame was created to visualize the geospatial distribution of 

pavement marking data in Arc gis pro. The machine learning prediction results suggests 

that the general approach is very promising in predicting the pavement marking 

retroreflectivity values at given locations and time. Due to limited number of pavement 

marking retroreflectivity collected by Laserlux mobile unit (started two years ago), the 

regression machine learning model has an R2 value of 0.7 when tested on real data. The 

feasibility of using machine learning model to establish the pavement marking condition 

deterioration model was also demonstrated. The machine learning derived deterioration 

curve is better than traditional statistical approach derived regression model as it provides 
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more details and can model complex retroreflectivity variation pattern over time (e.g., 

varying change rate over time).                                         

• The research team trained tabular data neural network models for various geotechnical 

drilling datasets, including locations, geology, elevation, major soil constituent, layer 

depth, groundwater table depth, SPT N-Value ranges, and bedrock depth. The tabular 

data neural network model has been updated for the drilling data based on parametric 

study of hyper-parameters value as well as adopting an oversampling strategy to address 

the data imbalance issue in the original dataset. Tuning the machine learning model for 

optimal hyper-parameter values was conducted. Comparison of the predicted results from 

Fast.ai neural network model and true value was also made by calculating the 

corresponding confusion matrices and plotting a scatter plot in this study. SHAP analysis 

was also conducted to show the importance ranking of input features for the drill data 

machine learning models.  
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